python解析sql_数据分析sql+tableau+python项目(python篇)

电商用户行为数据分析

准备工作流程:

选择行业-敲定方向-搜集数据-python数据抽取-导入数据库-导入python数据分析

指标体系搭建指标体系搭建

主要python知识点:数据清洗pandas、数据可视化matplotlib

数据清洗:数据概览(info,desc,head,shape)、随机抽样、空值处理、重复值处理、日期字符串转化、日期提取、异常值排除

数据分析:聚合groupby、透视表pivot_table、合并merge、分桶cut、函数(lambda、apply)

可视化:基本绘图(散点图、折线图、饼图、柱状图)、子图ax、标签辅助线颜色

一、理解数据

1.导入数据

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

plt.rcParams['font.sans-serif']=['Microsoft YaHei']

plt.rcParams['axes.unicode_minus']=False

data=pd.read_csv('C:/Users/Administrator/Desktop/jd_data.csv')

data.head()

data.info()

RangeIndex: 990499 entries, 0 to 990498

Data columns (total 22 columns):

user_id 990499 non-null int64

sku_id 990499 non-null int64

action_time 990499 non-null object

module_id 990499 non-null int64

type 990499 non-null int64

age 989972 non-null float64

sex 990045 non-null float64

user_reg_tm 990499 non-null object

user_lv_cd 990499 non-null int64

city_level 989730 non-null float64

province 989862 non-null float64

city 989862 non-null float64

county 989862 non-null float64

brand 990499 non-null int64

shop_id 990499 non-null int64

cate 990499 non-null int64

market_time 990499 non-null object

vender_id 990499 non-null int64

fans_num 990499 non-null int64

vip_num 990499 non-null int64

shop_reg_tm 607700 non-null object

shop_score 990499 non-null float64

dtypes: float64(7), int64(11), object(4)

memory usage: 166.3+ MB

2.数据处理

# 缺失值

(data.isnull().sum()/data.count()).apply(lambda x:format(x,'.4%'))

user_id 0.0000%

sku_id 0.0000%

action_time 0.0000%

module_id 0.0000%

type 0.0000%

age 0.0532%

sex 0.0459%

user_reg_tm 0.0000%

user_lv_cd 0.0000%

city_level 0.0777%

province 0.0644%

city 0.0644%

county 0.0644%

brand 0.0000%

shop_id 0.0000%

cate 0.0000%

market_time 0.0000%

vender_id 0.0000%

fans_num 0.0000%

vip_num 0.0000%

shop_reg_tm 62.9914%

shop_score 0.0000%

dtype: object

data=data.drop(labels='shop_reg_tm',axis=1)

data=data.dropna()

data.isnull().sum()

user_id 0

sku_id 0

action_time 0

module_id 0

type 0

age 0

sex 0

user_reg_tm 0

user_lv_cd 0

city_level 0

province 0

city 0

county 0

brand 0

shop_id 0

cate 0

market_time 0

vender_id 0

fans_num 0

vip_num 0

shop_score 0

dtype: int64

#重复值处理

print('重复值为:',data.duplicated().sum())

重复值为: 4

data=data.drop_duplicates()

print('重复值为:',data.duplicated().sum())

重复值为: 0

#一致化处理

data['action_time']=pd.to_datetime(data['action_time'])#行为时间日期转化为日期格式

data['action_date']=data['action_time'].dt.date

data['reg_date']=data.user_reg_tm.apply(lambda x:x[:10])

data['action_month']=data['action_time'].apply(lambda x: x.strftime('%Y-%m'))#新建行为时间月分列

data['register_year']=data['user_reg_tm'].apply(lambda x:x[:4])#新建注册时间年

data['action_hour']=data['action_time'].apply(lambda x: x.strftime('%H'))#新建行为时间小时列

data['user_reg_tm']=pd.to_datetime(data['user_reg_tm'],format='%Y-%m-%d')

data['weekday']=data['action_time'].dt.dayofweek+1#增加星期列

data['week_number']=data['action_time'].dt.week

data.head(3)

#数据转换 1.浏览(指浏览商品详情页);2.加入购物车;3.购物车删除;4.下单;5.关注;6.点击

data['type']=data['type'].replace([1,2,3,4,5],['浏览','下单','关注','评论','加购物车'])

data['sex']=data['sex'].replace([0,1,2],['男','女','保密'])

data['age']=data['age'].replace(-1,'未知')

data['sex']=data['sex'].replace(-1,'未知')

data.head(5)

data[['action_time','user_reg_tm']].agg(['max','min'])#数据集时间跨度

action_time user_reg_tm max 2018-04-15 23:59:38 2018-04-15 22:55:36 min 2018-02-01 00:00:00 2003-06-13 17:24:16

二、数据分析

2.1探索分析

2.1.1核心指标概览

plt.style.use('ggplot')

#uv和pv数据趋势

fig=plt.figure(figsize=(15,10))

ax1=plt.subplot(211)

data[data.type=='浏览'].groupby('action_date').user_id.nunique().plot(label='uv')

plt.legend()

data[data.type=='浏览'].groupby('action_date').user_id.count().plot(label='pv')

plt.legend()

plt.title('pv和uv趋势')

#订单趋势

ax3=plt.subplot(223)

data[data.type=='下单'].groupby('action_date').user_id.count().plot(label='order',ax=ax3)

plt.legend()

plt.title('下单用户趋势')

ax3=plt.subplot(224)

min_order=data[(data.type=='下单')&(data.reg_date>='2018-02-01')].groupby('user_id').action_date.min().value_counts().reset_index().sort_values('index')

plt.plot(min_order['index'],min_order['action_date'])

plt.xticks(rotation=45)

plt.title('首次付费用户日趋势')

plt.show()

经查2月15日为2018年除夕,对数据造成大的波动,2月6日开始急速下降,2月15日除夕后一周内数据逐渐上升到

节后order数据稍有下降,pv和uv数据出现明显下降趋势

首次付费用户年后有波动整体呈上升趋势

2.1.2异常数据排除

1.查找pv异常数据原因

data[(data.type=='下单')|(data.type=='浏览')].pivot_table(index='action_date',columns='type',values='user_id',aggfunc='count').sort_values('浏览').head(3)

type 下单 浏览 action_date 2018-03-27 908 27 2018-03-28 1060 109 2018-02-15 160 5623根据查询确认,2018-03-27的和2018-03-28pv数据9远远order数据147,所以确认为技术统计出错进行删除处理

data['action_date']=data.action_date.apply(lambda x:x.strftime('%Y-%m-%d'))#行为时间转化为字符串类型

data=data.drop(data[(data.action_date=='2018-03-27')|(data.action_date=='2018-03-28')].index)#删除异常值

2.uv和order数据分组排除

#新老用户的pv日分布趋势

plt.figure(figsize=(12,10))

ax1=plt.subplot(2,1,1)

data[(data.type=='浏览')&(data.reg_date>='2018-02-01')].groupby('action_date').user_id.nunique().plot(label='新用户')

plt.legend(loc=9)

data[(data.type=='浏览')&(data.reg_date

plt.legend(loc=4)

plt.title('uv日趋势')

ax2=plt.subplot(2,1,2)

data[(data.type=='下单')&(data.reg_date>='2018-02-01')].groupby('action_date').type.count().plot(label='新用户')

plt.legend(loc=9)

data[(data.type=='下单')&(data.reg_date

plt.legend(loc=4)

plt.title('用户order日趋势')

Text(0.5, 1.0, '用户order日趋势')

2018年后注册的用户访问量呈上升趋势,2008年前的用户下降较明显,08年注册的用户订单数据也出现下降

结论: - 春节后访问用户数、浏览人数、订单数都出现了下降,首次消费人数整体呈上升趋势 - 减少的访问和订单数据中以2018年之前注册的用户为主,推测老用户流失加速同时活跃度降低

假设: - 假设用户大量流失和沉默用户过多导致uv等数据下降

2.2业务流程分析

2.2.1新注册用户趋势

#2018年1-4月份新增注册用户趋势

plt.figure(figsize=(15,5))

ax1=plt.subplot(1,2,1)

data[data.register_year!='2018'].groupby('register_year').user_id.count().plot(label='注册')

plt.legend()

plt.title('年新增注册用户趋势')

ax2=plt.subplot(1,2,2)

data[data.reg_date>='2018-01-01'].groupby('reg_date')['user_id'].nunique().plot(lw=2,label='注册')

plt.xlabel('注册月份')

plt.legend()

plt.title('新增注册用户日趋势变化')

Text(0.5, 1.0, '新增注册用户日趋势变化')

fig=plt.figure(figsize=(15,5))

# 1.绘制购买日期间各表

data['reg_date']=pd.to_datetime(data['reg_date'],format='%Y-%m-%d')#转换为日期类型

data['action_date']=pd.to_datetime(data['action_date'],format='%Y-%m-%d')

day_order=data[(data.type=='下单')&(data.reg_date>='2018-02-01')][['user_id','reg_date']].reset_index()#新注册下单用户

count_order=data[(data.type=='下单')&(data.reg_date>='2018-02-01')].groupby('user_id')['action_date'].min().reset_index().rename({'action_date':'min_date'})

diff_order=pd.merge(day_order,count_order,on='user_id',how='right')#创建首购和最后购买时间表

diff_order['diff']=diff_order['action_date']-diff_order['reg_date']#增加间隔时间列

diff_order['diff']=diff_order['diff'].apply(lambda x:x/np.timedelta64(1,'D'))#将间隔时间列转换为整数类型

bin=[-0.9,0,3,7,15,30,60,90]#对间隔天数进行分桶

diff_order['diff_cut']=pd.cut(diff_order['diff'],bins=bin)

diff_order.head(3)

#2.留存分桶

rate_table=diff_order.pivot_table(index=['user_id'],columns="diff_cut",values='action_date',aggfunc='count')

rate_table=rate_table.applymap(lambda x:1 if x>0 else 0)

rate_table

#3.绘制分布图

ax1=plt.subplot(121)

(rate_table.sum()/rate_table.count()).plot.pie(autopct='%.0f%%')

plt.title('首次购买与注册时间间隔分布')

Text(0.5, 1.0, '首次购买与注册时间间隔分布')

2015年后注册人数增速变缓趋于稳定

在首次购买的用户中,超过44.94%的用户在注册时间当天完成购买,16.22%的用户会在3天内购买,16.22%的用户会在3天内购买

2018年新增注册用户3月份后下降趋势明显,但新用户uv数据上升说明新用户活跃度较高

2.2.2用户浏览和消费分析

1.用户浏览活跃度

day_act=data[(data.type=='浏览')].pivot_table(index=['user_id'],columns=['week_number'],values='sku_id',aggfunc='nunique').fillna(0)

day_act.head(3)

size_act=day_act.applymap(lambda x: '未访问' if x==0 else '不活跃' if x==1 else '活跃' if 1

old_rate=size_act.T.apply(lambda x: x.value_counts()/x.count(),axis=1)

fig=plt.figure(figsize=(14,10))

ax1=plt.subplot(221)

old_rate[['不活跃']].plot(ax=ax1)

plt.xlabel('')

plt.title('每周浏览不活跃用户占比')

ax2=plt.subplot(222)

old_rate[['未访问']].plot(ax=ax2)

plt.title('每周未访问用户占比')

plt.xlabel('')

ax3=plt.subplot(224)

old_rate[['活跃']].plot(ax=ax3)

plt.title('每周浏览活跃用户占比')

ax4=plt.subplot(223)

old_rate[['非常活跃']].plot(ax=ax4)

plt.title('每周浏览非常活跃用户占比')

print(old_rate[['不活跃']].mean().round(3))

print(old_rate[['未访问']].mean().round(3))

print(old_rate[['活跃']].mean().round(3))

print(old_rate[['非常活跃']].mean().round(3))

不活跃 0.105

dtype: float64

未访问 0.866

dtype: float64

活跃 0.026

dtype: float64

非常活跃 0.003

dtype: float64

每周不访问任何商品的平均用户平均占比86.6%

每周只访问1个商品的平均用户占比10.5%

每周访问超过1个产品同时不超过5个商品的平均用户占比2.6%

每周访问超过5个商品的平均用户占比0.3%

第六周用户活跃数量激增和回落,推测受春节前后活动的影响,第12周开始出现下降,2018年第12周京东因假货被作家六六投诉,受到了一定影响,验证猜测还需要与运营部门进一步沟通确认

2.转化率

rate_all=data[(data.type=='浏览')|(data.type=='下单')|(data.type=='加购物车')].pivot_table(index=['type'],columns=['action_month'],values='user_id',aggfunc='count').T

print(rate_all)

rate_all['转化']=(rate_all['下单']/rate_all['浏览'])

rate_all['转化'].plot.bar()

print('平均转化率:',format(rate_all['转化'].mean(),'.2%'))

type 下单 加购物车 浏览

action_month

2018-02 19739.0 NaN 372698.0

2018-03 24609.0 NaN 355838.0

2018-04 11886.0 15988.0 153242.0

平均转化率: 6.66%

加入购物车的数据出现丢失不做统计,平均转化率为6.66%,连续三个月的付费转化率是上升的,转化率比较正常

3.复购率

ord_count=data[data.type=='下单'].groupby('user_id').type.count()

ord_count.describe()#购买次数描述统计

count 55300.000000

mean 1.016890

std 0.148058

min 1.000000

25% 1.000000

50% 1.000000

75% 1.000000

max 7.000000

Name: type, dtype: float64

sec_order=pd.cut(ord_count,bins=[0,1,4,7]).value_counts().reset_index()

sec_order['sec_order_rate']=(sec_order['type']/sec_order['type'].sum()).round(4)

sec_order

index type sec_order_rate 0 (0, 1] 54470 0.9850 1 (1, 4] 825 0.0149 2 (4, 7] 5 0.0001

print('复购率为:',format((sec_order.iloc[1,2]+sec_order.iloc[2,2]),'.2%'))

复购率为: 1.50%付费用户一共55300人,其中只购买一次不在购买的用户占98.5%;购买两次以上不超过4次的用户占1.49%,购买5次及以上的只有5人占0.1%

2.2.3用户购买间隔时间

fig=plt.figure(figsize=(15,5))

# 1.绘制购买日期间各表

data['action_date']=pd.to_datetime(data['action_date'],format='%Y-%m-%d')#转换为日期类型

day_order=data[(data.type=='下单')][['user_id','action_date']].reset_index()#新注册下单用户

count_order=data[(data.type=='下单')].groupby('user_id')['action_date'].min().reset_index().rename({'action_date':'min_date'})

diff_order=pd.merge(day_order,count_order,on='user_id',how='inner',suffixes=('','_min'))#创建首购和最后购买时间表

diff_order['diff']=diff_order['action_date']-diff_order['action_date_min']#增加间隔时间列

diff_order['diff']=diff_order['diff'].apply(lambda x:x/np.timedelta64(1,'D'))#将间隔时间列转换为整数类型

bin=[0,3,7,15,30,60,90]#对间隔天数进行分桶

diff_order['diff_cut']=pd.cut(diff_order['diff'],bins=bin)

diff_order.head(3)

#2.留存分桶

rate_table=diff_order.pivot_table(index=['user_id'],columns="diff_cut",values='action_date',aggfunc='count')

rate_table=rate_table.applymap(lambda x:1 if x>0 else 0)

rate_table

#3.绘制分布图

ax1=plt.subplot(121)

(rate_table.sum()/rate_table.count()).plot.bar()

plt.title('老用户重复购买时间分布')

# 1.绘制购买日期间各表

day_new=data[(data.reg_date>='2018-02-01')&(data.type=='下单')][['user_id','action_date']].reset_index()#新注册下单用户

count_new=data[(data.type=='下单')].groupby('user_id')['action_date'].min().reset_index().rename({'action_date':'min_date'})

diff_new=pd.merge(day_new,count_new,on='user_id',how='inner',suffixes=('','_min'))#创建首购和最后购买时间表

diff_new['diff']=diff_new['action_date']-diff_new['action_date_min']#增加间隔时间列

diff_new['diff']=diff_new['diff'].apply(lambda x:x/np.timedelta64(1,'D'))#将间隔时间列转换为整数类型

bin=[0,3,7,15,30,60,90]#对间隔天数进行分桶

diff_new['diff_cut']=pd.cut(diff_new['diff'],bins=bin)

#2.留存分桶

rate_tables=diff_new.pivot_table(index=['user_id'],columns="diff_cut",values='action_date',aggfunc='count')

rate_tables=rate_tables.applymap(lambda x:1 if x>0 else 0)

rate_tables

#3.绘制分布图

ax2=plt.subplot(122)

(rate_tables.sum()/rate_tables.count()).plot.bar()

plt.title('新用户重复购买时间分布')

Text(0.5, 1.0, '新用户重复购买时间分布')

2.2.4 RF模型分析

#绘制rfm表

rf=data[data.type=='下单'].pivot_table(index='user_id',values=['type','action_date'],aggfunc={'type':'count','action_date':'max'})

#计算最近一次消费时间差

rf['R']=(rf['action_date'].max()-rf['action_date'])/np.timedelta64(1,'D')

rf.rename(columns={'type':'F'},inplace=True)#更改列名

rf=rf[['R','F']]

#以平均数为阈值定义函数

def rfm(x):

lv=x.apply(lambda x:'1' if 0

number=lv['R']+lv['F']

a={'11':'保持用户','10':'新用户','01':'唤醒用户','00':'流失用户'}

result=a[number]

return result

rf['group']=rf.apply(lambda x:x-x.mean()).apply(rfm,axis=1)

rf['group'].value_counts()#查看各类别用户分布

流失用户 27575

新用户 26895

唤醒用户 542

保持用户 288

Name: group, dtype: int642018年之前注册的用户复购的时间主要集中在初次购买后15-30天和30-60天,初次购买两个月后开始流失。

说明老用户购物间隔时间长,购买频次低活跃度低,沉默用户较多

2008年注册的新用户重复购买的时间集中在除此消费后一周内,重复购买率位于30%-40%,但随着时间退推移重复购买的次数降低,两个月后消失。

说明新用户一周内活跃度和消费意识比较强,但是缺乏持久度,留住新用户的能力较差

总结: - 新增注册用户减少,说明用户的拉新出现了问题需要针对各拉新渠道进行分析,但新注册用户访问数和销售额并未下降说明比较活跃。同时新用户数据量少对整体数据影响较小,所以不影响原假设。 - 用户浏览数据显示,每周处于沉默和只浏览一个商品的用户占比超97%,说明用户的活跃度过低 - 京东整体销售转化率6.6%处于中等水平,但是复购率偏低只有1.5%同时二次购买的间隔时间集中在15-60天消费频率低,说明没有形成品牌认知,用户忠诚度低 - 通过RF模型发现购买次数低的新用户和频次低长时间为购买用户占比超过90%,大批用户出现流失和处于新手期需要进一步改善

结论: - 用户活跃率低、复购率低、消费间隔长、流失用户和新手期用户多等数据,证明原假设成立用户严重流失和活跃度低导致uv等数据下降

2.3用户属性和行为特征

2.3.1用户属性

1.性别

plt.figure(figsize=(18,10))

ax1=plt.subplot(2,2,1)

data[(data.type=='下单')].groupby('sex').type.count().plot.pie(autopct='%.2f%%',label='性别占比')

plt.title('order性别占比')

# #品类商品用户性

ax2=plt.subplot(2,1,2)

gender_pv=data[(data.type=='下单')].pivot_table(index='cate',columns='sex',values='type',aggfunc='count')

gender_pv['总数']=gender_pv['男']+gender_pv['女']+gender_pv['未知']

gender_pv=gender_pv.sort_values('总数',ascending=False).head(20)

gender_pv[['男','女']].plot.bar(ax=ax2)

plt.subplots_adjust(wspace=0.1)

plt.xlabel('品牌')

plt.title('下单用户性别产品类型结构')

ax3=plt.subplot(2,2,2)

data[(data.type=='下单')&(data.age!='未知')].groupby('age').type.count().plot.pie(autopct='%.2f%%')

plt.title('order年龄分布')

D:\Anaconda\lib\site-packages\pandas\core\ops\__init__.py:1115: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison

result = method(y)

Text(0.5, 1.0, 'order年龄分布')

gender_pv['男'].corr(gender_pv['女'])

gender_pv['男'].corr(gender_pv['女'])

0.6215780043629314销售数据中男性居多占比为55.58%,最受男性青睐的商品类型为7销量高出第二位75两倍多,第三四位是24、27

销售数据中女性占比为43.83%,对产品类型需求差异小,24、75、34、7、27是销量最高的5类商品

浏览的用户主要集中在5和6两个年龄段,5的用户占比最高44.4%,6年龄段用户28.87%

2.地区

fig=plt.figure(figsize=(15,5))

ax1=plt.subplot(121)

data[(data.type=='下单')].groupby('province').type.count().sort_values(ascending=False).plot.bar(color='darkcyan')

plt.legend(['销量'])

plt.title('销量地区分布')

ax2=plt.subplot(122)

age_order=data[(data.type=='下单')].pivot_table(index='city_level',columns='type',values='user_id',aggfunc='count')

age_order.plot.bar(ax=ax2)

plt.legend(['销量'])

plt.title('销量城市级别分布')

Text(0.5, 1.0, '销量城市级别分布')

销量排名前两位的省份是20和11

销量集中在1,3,4,5这4类城市

3.流量时段

plt.figure(figsize=(16,5))

ax1=plt.subplot(121)

data[data['type']=='浏览'].groupby('action_hour')['user_id'].nunique().plot(lw=2)

plt.legend(['uv'],loc=0)

plt.axvline(x=10,linestyle='--',c='black',lw=0.5)#添加辅助线

plt.axvline(x=22,linestyle='--',c='black',lw=0.5)#添加辅助线

plt.axvline(x=18,linestyle='--',c='black',lw=0.5)#添加辅助线

时段订单和访问数据总体趋势保持一致,5-10点活跃度急速提升10点活跃度达到峰值,10点-18点比较稳定,晚上18点到22点出现第二个峰值

2.4产品偏好

1.产品类型

type_count=data.pivot_table(index='cate',columns='type',values='user_id',aggfunc='count').fillna(0)

fig=plt.figure(figsize=(15,5))

ax1=fig.add_subplot(1,2,1)

type_count['下单'].sort_values(ascending=True).tail(20).plot.barh(ax=ax1,label='下单',color='darkcyan')

plt.legend()

plt.ylabel('')

plt.title('产品类型销量top20')

ax2=fig.add_subplot(1,2,2)

type_count['浏览'].sort_values(ascending=True).tail(20).plot.barh(ax=ax2,label='浏览')

plt.subplots_adjust(wspace=0.5, hspace=None)#调整子图间距

plt.legend()

plt.ylabel('')

plt.title('产品类型浏览量top20')

Text(0.5, 1.0, '产品类型浏览量top20')

产品类别的关注度与销量差别不大,7号类别的商品关注度和销量最好

7、34、27、81四类商品关注度和销量都高需要重点关注

2.品牌

type_count=data[data.cate==7].pivot_table(index='brand',columns='type',values='user_id',aggfunc='count').fillna(0)

fig=plt.figure(figsize=(15,5))

ax1=fig.add_subplot(1,2,1)

type_count['下单'].sort_values(ascending=False).head(20).plot.bar(ax=ax1,label='下单',color='darkcyan')

plt.legend()

plt.xlabel('')

plt.title('品牌销量top20')

ax2=fig.add_subplot(1,2,2)

cum_order=(type_count['下单'].sort_values(ascending=False).cumsum()/type_count['下单'].sort_values(ascending=False).sum()).reset_index()

plt.plot(cum_order.index,cum_order['下单'])

plt.title('品牌商品销量累计曲线')

Text(0.5, 1.0, '品牌商品销量累计曲线')

用户的品牌消费集中度较高

总结: 通过uv、pv、销量数据的趋势分析,发现核心指标出现了下降的趋势。对用户进行按照注册时间进行分组和对比分析,做出假设用户的大量流失和沉默导致核心指标数据的下降。按照业务流程,对新增注册情况、pv活跃度、用户复购率、购买时间间隔、转化率等数据做了分析,数据指标都低于行业平均水平相比,证明了原假设成立。另外通过RF模型对用户进行了分类,并对消费用户的基本属性和行为偏好做了总结分析,能够对不同类型的用户按照不同特征采取不同的运营和营销策略,改善运营现状提升核心指标数据。

建议:平台需要培养店铺的自主经营能力,如利用敏感度较高的流量产品降价的方式吸引用户,或者利用节后新机上市的机会和相关店铺合作组合销售,起到引流和提高销量的作用。

针对注册用户下降的问题,需要针对渠道数据、活动数据等综合排查,用户获取时按照用户画像将更多的资源放到销售数据更好的20和11两个省份1、3、4、5四类城市,和的年龄集中在5,6两个年龄段,性别男性为主的人群。投放时间可注意10点和22点左右两个高峰期。

用户复购率低,针对新用户通过激励手段增加单品购买次数提高留存,根据分析新注册用户注册3-7天内是重复购买意愿是最大的,15天后下降到正常水平,通过咨询引导激励措施帮助新用户快速度过新手期;根据分析显示目前用户的购买间隔主要在15-60天,用户购买频率低间隔长品类少复购率只有1.5%每周访问超过1个产品用户占比只有2.6%,所以针对老用户的行为特征和画像如品牌偏好产品偏好等进行精准推送和组合折扣营销,缩短用户的购买间隔时间和跨品类购买数。

针对处于新手期的用户需要,主动与用户沟通听取用户问题反馈和建议,优化用户体验帮助用户快速度过新手期;针对流失用户,首先明确新老用户然后根据消费金额确定用户的价值,对高价值用户可施行电话沟通查明原因,对普通用户可通过短信或推送形式,召回方式主要以物质激励为主如优惠券和红包;唤醒用户需要增加复购和访问频次。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值