def dumps(obj, skipkeys=False, ensure_ascii=True, check_circular=True,
allow_nan=True, cls=None, indent=None, separators=None,
default=None, sort_keys=False, **kw):#Serialize ``obj`` to a JSON formatted ``str``.
#序列号 “obj” 数据类型 转换为 JSON格式的字符串
def dump(obj, fp, skipkeys=False, ensure_ascii=True, check_circular=True,
allow_nan=True, cls=None, indent=None, separators=None,
default=None, sort_keys=False, **kw):"""Serialize ``obj`` as a JSON formatted stream to ``fp`` (a
``.write()``-supporting file-like object).
我理解为两个动作,一个动作是将”obj“转换为JSON格式的字符串,还有一个动作是将字符串写入到文件中,也就是说文件描述符fp是必须要的参数"""
示例代码:
>>> importjson>>> json.dumps([]) #dumps可以格式化所有的基本数据类型为字符串
'[]'
>>> json.dumps(1) #数字
'1'
>>> json.dumps('1') #字符串
'"1"'
>>> dict = {"name":"Tom", "age":23}>>> json.dumps(dict) #字典
'{"name": "Tom", "age": 23}'
a = {"name":"Tom", "age":23}
with open("test.json", "w", encoding='utf-8') as f:#indent 超级好用,格式化保存字典,默认为None,小于0为零个空格
f.write(json.dumps(a, indent=4))#json.dump(a,f,indent=4) # 和上面的效果一样
保存的文件效果:
二. loads 和 load
loads和load 反序列化方法
loads 只完成了反序列化,
load 只接收文件描述符,完成了读取文件和反序列化
查看源码:
def loads(s, encoding=None, cls=None, object_hook=None, parse_float=None, parse_int=None, parse_constant=None, object_pairs_hook=None, **kw):"""Deserialize ``s`` (a ``str`` instance containing a JSON document) to a Python object.
将包含str类型的JSON文档反序列化为一个python对象"""
def load(fp, cls=None, object_hook=None, parse_float=None, parse_int=None, parse_constant=None, object_pairs_hook=None, **kw):"""Deserialize ``fp`` (a ``.read()``-supporting file-like object containing a JSON document) to a Python object.
将一个包含JSON格式数据的可读文件饭序列化为一个python对象"""
实例:
>>> json.loads('{"name":"Tom", "age":23}')
{'age': 23, 'name': 'Tom'}
importjson
with open("test.json", "r", encoding='utf-8') as f:
aa=json.loads(f.read())
f.seek(0)
bb= json.load(f) #与 json.loads(f.read())
print(aa)print(bb)#输出:
{'name': 'Tom', 'age': 23}
{'name': 'Tom', 'age': 23}
三. json 和 picle 模块
json模块和picle模块都有 dumps、dump、loads、load四种方法,而且用法一样。
不用的是json模块序列化出来的是通用格式,其它编程语言都认识,就是普通的字符串,
而picle模块序列化出来的只有python可以认识,其他编程语言不认识的,表现为乱码
不过picle可以序列化函数,但是其他文件想用该函数,在该文件中需要有该文件的定义(定义和参数必须相同,内容可以不同)
四. python对象(obj) 与json对象的对应关系
+-------------------+---------------+
| Python | JSON |
+===================+===============+
| dict | object |
+-------------------+---------------+
| list, tuple | array |
+-------------------+---------------+
| str | string |
+-------------------+---------------+
| int, float | number |
+-------------------+---------------+
| True | true |
+-------------------+---------------+
| False | false |
+-------------------+---------------+
| None | null |
+-------------------+---------------+
五. 总结
1. json序列化方法:
dumps:无文件操作 dump:序列化+写入文件
2. json反序列化方法:
loads:无文件操作 load: 读文件+反序列化
3. json模块序列化的数据 更通用
picle模块序列化的数据 仅python可用,但功能强大,可以序列号函数
4. json模块可以序列化和反序列化的 数据类型 见 python对象(obj) 与json对象的对应关系表
5. 格式化写入文件利用 indent = 4