
对同一个观察对象,我们在不同时间点记录所得的资料,属于重复资料,这样就不能使用t检验或方差检验进行比较分析。主要原因是因为不同时间点观察对象的记录,可能会存在一定的相关性,这首先就不满足变量独立性的假设,因而此时我们要引入重复资料的方差分析。

假设一个情景:为研究一种减肥药物,对美体爱好者减肥效果,我们进行为期7个月的观察,将60位参与者随机分为2组,其中试验组进行减肥药物的服用,对照组服用等量的安慰剂。分别在1个月,3个月,5个月以及7个月时对各组志愿者的体重进行检验,利用重复资料的方差分析,分析两组志愿者体重在各个时间点的差异,以评估减肥药物健美效果。

首先将数据录入SPSS如下

选择【分析】--【一般线性模型】--【重复度量】

被试因子是指我们研究的对象:体重
体重有4个级别:分别在4个不同时间点检测

点击【添加】,并选择【定义】

将month1,3,5,7导入【群体内部变量】
将Group导入【因子列表】

在【绘制】对话框中,如下选择,并点击【添加】【继续】

在【选项】对话框如下设置,勾选描述统计,点击【继续】,其他选择默认方式,然后回到主界面点击【确定】,完成分析过程


分析结果比较多,没关系我们一一解读。检验结果主要有为四模块:描述统计,球形检验,主体内效应检验,主体间效应检验。
01
描述统计

【主体间因子】 本次分析一共有两个因子:实验组和对照组
【描述性统计】 各组不同阶段体重的均值,标准差
【多变量检验】 对4组体重进行初步多变量检验,组间体重存在显著差异;而不同组的体重差异不显著
02
球形检验

【Mauchly球形度检验】 球形检验的主要目的是为了评价不同时间点测量的体重之前是否有相关性,若是P<0.05,则认为各时间点体重测值不符合球形检验,重复测量的数据之间有相关性,在主体内效应的检验中需要采取校正结果;若是P>0.05,则认为各时间点体重测值符合球形检验,在主体内效应的检验中可采用球形度检验结果。
03
主体内效应检验

【主体内效应的检验】 此次分析最重要结果,体重在组内(主体内)变化有差异,但是不同组(Group)不同时间点体重变化差异不显著。即时间对体重变化影响显著,而不同分组的处理方式对体重变化无显著影响。
04
主体间效应检验

【主体间效应的检验】 即比较组间(试验组 vs 对照组)之间体重差异,Group的检验统计量F=0.629,P=0.431,说明不同组间体重差异无显著差异。

作图结果可以更直观的观察,似乎试验组体重要比对照组体重总体低一些,但是在统计学上这种体重的变化趋势,可能更是受到时间变化的影响,而非分组处理的影响,即减肥药物可能对健美效果影响不大。

本文通过一个减肥药物研究案例介绍了如何使用SPSS进行重复测量资料的方差分析。分析结果显示,时间对体重变化影响显著,但不同组间的体重差异无显著差异,表明减肥药物对健美效果的影响可能不明显。
4799

被折叠的 条评论
为什么被折叠?



