如果你是一个使用量子体系的新手, 那这篇文章很可能对你有帮助.
其实关于算符混用这个现象很早就引起了我的注意, 但出于各种原因一直也没专门提起过. 然而最近私信问这个问题的人又多了起来, 这又一次让我注意到了这个问题, 既然这个专栏的目标是为新手解惑的, 那这样一个常见的问题也有必要专门谈一谈了.
目録:
1. 这类问题的一个例子
1.1. 问题介绍
1.2. 问题浅析
2. 问题原因
2.1. 请不要再继续混用分别作用于态矢量与波函数的算符了
2.2. 为什么这样会出错呢
2.3. 如何判断结合关系
3. 如何用正确的手段去解决第一部分的例子
3.1. 在坐标表象下还原这个答案
3.2. 真正应该采用的运算思路
1. 这类问题的一个例子:
这段可以吸引读者眼球, 引起读者兴趣, 然而不看也没啥.
1.1. 问题介绍:
让我们从某本国内知名度很高的量子力学教材的一个习题解答来引出这个问题:
这段推导我在与包括同学在内的多个网友的交流过程中见过. 他们有的说自己算着少了个2, 有的干脆就说看不懂是怎么一个推导思路.
其实我第一次见到也觉得挺迷幻的, 我当时觉得这种推导手法粗犷奔放不拘一格, 完全可以说是天马行空. 但我当时仍然接受挑战, 我看似乎是在坐标表象下处理的, 就试着在坐标表象下推演了一番, 最后确实还很快凑出了极为神似的结果.
1.2.问题浅析:
我们仔细看图中的推导过程, 那个动量
少了一个
ははは, 是不是很奇妙? 这颗星星是什么呢? ¯_(ツ)_/¯ 其实就是波函数.
这只是这类问题中的一例, 其它的我也没存档啥的, 好像还有径向动量算符之类的.
2. 问题原因:
2.1. 请不要再继续混用分别作用于态矢量与波函数的算符了:
原因就是作用与波函数的算符与作用于态矢量的算符混用的问题.
在这里我可以明确指出动量算符
也就是说
详情请前往: 正樹:关于初等量子力学里面动量的表示
所以说实际上相对正确的一个记法是:
想更进一步了解这部分的可前往: 正樹:量子力学中的动量/为何说动量是平移的生成元
上面公式的本源也是通过像前面[i]式那样插入封闭算符推导而来的, 就是说我们可以将得到的类似于
正是因为 [ii] 这个特殊的公式, 我们可以迷思地认为左矢是表象的选择, 而被表象掠过的算符变成了这个表象下作用于波函数的对应形式.
事实上这种做法似乎并没有特别流行(?) 以至于知乎上出现过许多这样的问题: 量子力学里左矢与算符什么时候可交换? .
2.2. 为什么这样会出错呢:
假如不经过表象的选择, 就直接从心所欲的把代表着线性变换的算符与它在各个表象之间的表现形式互相变幻的话, 一个最直接的问题就是, 你可能会记错自己选取的表象, 把自己搞蒙.
其次也是许多新手可能没意识到的问题, 那就是作用在矢量的算符满足结合律, 而具体表象下作用于波函数的算符是不满足结合律的.
也就是说在希尔伯特空间, 算符与态矢量之间的乘积是可以任意添加括号的[1]:
然而在比如说坐标表象下你试试:
2.3 如何判断结合关系:
也曾有人问到:
为什么是
这个问题很简单, 首先我们要意识到, 当一个左矢和一个右矢包住了一堆算符的时候, 我们把这个叫做矩阵元, 因为它整体只是一个数了.
所以对于
上面最右边的式子变成了对一个矩阵元求坐标偏导,
现在再把
答案很明显了吧:
其实这个问题我似乎在很久以前就提到过, 但当时没发现这个错误受众这么多: 正樹:关于算符的作用是[求导与函数的乘积形式]的情况容易出现的运算错误与δ函数的导数的作用
3. 如何用正确的手段去解决第一部分的例子:
3.1. 在坐标表象下还原这个答案:
我们可以看出书的作者是准备在坐标表象下处理的, 那我们就左乘一个
为了使左矢进化为函数让我们的操作更合法, 我们右乘一个任意的希尔波特空间矢量
好了让我们开始实验吧:
上面每一步都写得很细很细了, 就不再多做更多说明.
最后的答案也可以看出和书上的结果极为相似, 但要注意的是绝不能再多加这样一步:
因为
计算到此为止. 请勿再试图添一步得出
3.2. 真正应该采用的运算思路:
难道我们能满足于求助坐标表象的结果吗? 难道这个冗余坐标表象不能被剔除吗?
Hell No, 我们碰到这种情况第一时刻就应该想到利用公式
上述公式的来历见 正樹:量子力学中的动量/为何说动量是平移的生成元 的附录 [附1]
让我们开始实验吧:
也就是说正确的对应关系是
是不是出人意料的轻松? 让我们再放到坐标表象下观察一下:
这个结果又回来了. Well, let's call it a day.
下次, 要是再有人问我这个事, Well, Bang! 就把这篇文飞过去.
参考
- ^这得益于希尔伯特空间中的这种运算可以看作是矩阵的乘法
- ^其实不乘也行, 甚至你不乘这个左矢都可以, 只要你心里有一个稳定的小星星* (笑