命题1.12
经过直线外的一点可以向直线作垂线。

设:AB为已知直线,C点为给定的点。
求作:C点可以向AB作垂线。
在直线的另一边任取一点D,以C为圆心,CD为半径作圆EFG(公设1.3)。
公设1.3: 以定点为圆心及定长的线段为半径可以作圆。
AB与圆C交于G、E,作GE的中点H(命题1.10)。
命题1.10 一条线段可以被分成两条相等的线段。
连接CG、CH、CE(公设1.1)。
公设1.1:过两点可以作一条直线。
那么我说:CH便是C点向线段AB作的垂线。
因为:GH等于HE,CH是公共边,CG等于CE。
所以:∠CHG等于∠EHC,且它们为相邻角。
当一条线与另一条线相交形成邻角时,两角相等,皆为直角。这条线被称为另一条线的垂线(定义1.10)。
所以:CH是从C点向AB线引的垂线。
所以:经过直线外的一点可以向直线作垂线。
证完。
心得体会
之前讨论过,演绎推理是从已知条件(我们假设它是已知的或者已确定的)推导得到相应结论的过程。在这个命题的已知条件中,有任取的一点D,那么这个任取的D到底是已知条件还是未知条件呢?如果说它是未知条件,那由未知到未知的推理过程完全是无意义的。所以说,D点应该是确定的。
其实,在整个推理中,D点到底是哪个点不重要,推理中只需要利用它是“直线AB另一侧的点”这一性质即可导出整个命题的结论。换种角度来说,利用任意一个“直线AB另一侧的点”都可以得到本命题的结论。
很显然,这样的D点肯定是存在的,因为欧几里得所研究的宇宙是是由无数不可分割的点组成的,直线AB的下方更是如此。
