模型的自相关系数计算_时间序列分析第08讲(均值估计收敛速度,自协方差估计,白噪声检验,预测引入)...

本文深入探讨时间序列分析中的模型自相关系数计算,包括均值估计的收敛速度、AR(2)模型计算、自协方差函数估计及白噪声检验。通过模拟实验展示了样本均值的收敛特性,并介绍了卡方检验和样本自相关置信区间检验法在白噪声检验中的应用。此外,还简要提及了时间序列预报的相关性质。
摘要由CSDN通过智能技术生成

4.1 均值的估计

(三)收敛速度

一般来说,重对数律满足时,收敛速度为

定理 线性平稳序列

定义如下,其谱密度在 0 处非 0

当以下条件成立一个时:

  • 负指数趋于 0
  • 谱密度在 0 处连续且
    对某个 r > 2 成立

那么有重对数律

从中可得

这个结果非常的好,因为即使序列是独立同分布的,也不过是这个结果。

(四)AR(2) 均值的计算

,考虑如下 AR(2) 模型

为模拟方便,假定

将样本均值记为

对模型两边求和再取平均得到

第二个等号是配凑样本均值,最后一步令 N 趋于无穷,后面两项几乎处处趋于 0.

进而

,可见当 N 趋于无穷时,线性平稳序列的样本均值 与 白噪声 的样本均值
近似成正比

(五)估计收敛性的模拟

为了直观理解上面“近似成正比”的结果,我们取定参数进行随机模拟,结果如下。

aa7326d8faf97897c6d31f41f98969cf.png

970b99a553461df1893801d7b65f2e02.png

可见,线性平稳序列的样本均值 与 白噪声 的样本均值非常的接近。

现在我们重复上述过程,得到 M = 1000 个序列,也就得到了 1000 个样本均值。

现在研究这 1000 个样本均值的均值和方差,结果如下表。

为平稳序列的样本均值序列,
为白噪声的样本均值序列。

根据收敛速度的定理,样本均值的收敛速度为

,样本标准差的收敛速度为
,取不同的 N ,结果是吻合的。

ps:这一部分主要是提供一种分析数据的角度。

4.2 自协方差函数的估计

估计量是自然的(样本协方差函数):

自相关系数的估计为

:这里不除 N-k,一方面我们不对较大的 k 求自协方差函数,另一方面(更重要)只有除以 N 才能保证自协方差函数正定。

下面说明样本自协方差函数的正定性。

(一)样本自协方差函数的正定性

只要样本观测值

不全相同

那么

,记

,只要
不全为 0,则 A 秩为 N,进而样本自协方差阵满秩。

秩为 N 的说明:不妨设

不为 0 ,观察第 1 到 第 N 列,它们是线性无关的。对于其它的
也是同理的(找一个非零斜面)。

(二)相合性

定理1 估计量是渐近无偏的

证明:首先记原序列中心化后的序列为

,其样本均值为

进而根据样本自协方差函数的定义(中心化前后样本自协方差函数一样)

之前在均值估计相合性中我们得到

,对于中间那项,利用柯西不等式

第二步利用

所以

定理2 如果

是严平稳遍历序列,则有强相合性

证明 由严平稳遍历可得

考虑上面定理证明中的中间那项

所以

(三)渐近分布--证明不要求,会用即可

下面讨论白噪声四阶矩存在、独立同分布,并且系数平方可和的平稳列。

实际上是
的方差。设
是独立同分布的标准正态分布

定义(第一眼看上去有点不知所以)

不过最基本的“正态分布”还是能够看出来的。其中均值为 0,方差为诸 W 前系数的平方和

定理 如果独立同分布白噪声的四阶矩存在,并且平稳列的谱密度平方可积

那么对任何正整数 h,当 N 充分大时有以下依分布收敛结果:

根据前面相合性的结果,有

渐近正态性由中心极限定理可知,只要比较两边的协方差矩阵是否相等即可,但比较复杂,不做要求。

(四)自相关检验例子-- MA(q) 序列

当 m > q 时,总体的自相关系数为 0,根据上面的定理,

依分布收敛到
的分布,其中

注意到当 m > q 时,

,并且 t-m 应该在 -q 到 q 之间,令 l=t-m ,可以将上式化简为

这个式子可以用于假设检验。试想,如果我们已经确定了 q,那么 m > q 时,根据渐近正态分布,可以给出自相关系数

的置信区间,如果根据样本得到的样本自相关系数没有落在这个区间中,就可以认为该序列不是 MA(q) 序列。

当然,也可以利用这个渐近分布来确定 q,具体做法为:q 从 1 开始逐渐增大,观察当 m > q 时,样本自相关系数是否都落在置信区间中。

例子-- AR(1) 序列

同样利用定理可得

利用

,方差部分计算如下

(五)谱密度平方可积的等价条件

实际工作时很难验证定理中“谱密度平方可积”的条件,于是希望能把平方可积的条件改加在自协方差的收敛速度上。

定理 对平稳序列,自协方差函数平方可和的充分必要条件是谱密度平方可积。

(六)定理中四阶矩条件放宽

四阶矩存在的条件太强了,可以改为对白噪声系数的要求:

对某个常数

这个条件比较容易满足,特别是当系数本身是负指数趋于 0 的。

(七)白噪声情形--得到非常好的结论

(1)渐近分布介绍

推论 利用定理,如果

是独立同分布的白噪声序列,自相关系数的估计还是

那么对于任何正整数 h,

依分布收敛于
多元标准正态分布

利用这个结论,可以检验一个序列是否为白噪声。思路具体有如下两个:

  • 利用多元正态性检验,构造卡方检验统计量
  • 看做来自一元标准正态的样本,构造 U 检验统计量

同样利用定理,如果四阶矩存在,那么

依分布收敛于

验证 设白噪声方差为

,根据定理写出

上面式子中,

同样地

所以根据前面的定理,有依分布收敛的结果。

(2)AR(2) 模型实例

,考虑如下 AR(2) 模型

为模拟方便,假定

模拟得到理论的自协方差函数及其估计量如下图。

dbb90e61f24c3530fdd640c113a6686f.png

估计量的收敛速度难以在理论上推导出来,所以采用模拟的方法,模拟 1000 次,得到 1000 个自协方差函数的估计量,然后计算标准差(称为标准误差)。

8e80a304045daf86bc6174fb3b6e9076.png

4.3 白噪声检验

我们将模型建好后,最后都要取残差序列,检验它是否为白噪声。

(一)卡方检验

根据推论,

服从多元标准正态分布。构造卡方检验统计量如下:

在白噪声假设成立的条件下,该统计量近似自由度为 m 的卡方分布。

其中 m 并不是越大越好,因为自相关系数本身会很快趋于 0(即使不是白噪声),实际应用中取 m 不超过 10。

注意:这个自相关系数是残差序列的,而不是原来的 AR、MA 等序列。

(二)样本自相关置信区间检验法

考察单个自相关系数,它可以看做是来自一元正态总体的样本,所以

如果有超过 5% 的

,就否定白噪声假设。

同样地,m 不能取太大,理由与卡方检验相同。

822451c4ef5326bcd0cc6923e25a9458.png

a6b70bfec57ec698f70eacd620349260.png

db5cf3148085a0e09cdd00641fc0b0a8.png
  • 对标准白噪声检验一般可以成功
  • 对 MA(1) 序列如果取 m = 20 则很可能不成功,因为一般只有第一个超出界限
  • 对 AR(2) 序列检验一般成功,其自协方差函数不截尾

第五章 时间序列的预报

简单定义一下最佳线性预测。设 Y 是你要预测的,现在已知的是 X,X 是一组向量数据。如果存在向量

,对任意向量
使得

则称

为最佳线性预测,记作

其几何意义如下图,在 X 张成的平面中寻找一个向量,使得它离 Y 的距离最小(也就是残量与 Y 垂直)

a3c7194652684f96e64a63b11b8e9a0e.png
当然,也可以用绝对值或其他方式来度量距离,那就是另一套理论了

如果 Y 和 X 的均值不是 0,可以作如下变换

所以之后总假设序列的均值为 0 。

表示 X 的自协方差矩阵,
表示 X 和 Y 的协方差向量。

(一)性质一

如果

,那么最佳线性预测为
,并且

已知时,以
为系数e 的
被称为
预测方程。( 背熟!!!

它可以通过几何意义导出,考虑下图

bb406522e296de00403e97d8309b5d2e.png

其中内积

,而在这里内积就是乘积的数学期望。而性质一中那个式子,从图上看就是勾股定理!(帮助建立直观概念)

具体证明

首先证明最佳线性预测,类似这种证明套路都是加一项减一项,然后证明交叉项为 0 。这里交叉项为

根据预测方程可知交叉项为 0 。

同样地,利用预测方程,对均方误差进行整理

第三个等号用到预测方程。

后续还将给出一共 9 条性质。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值