卷积神经网络的结构_图文详解级联金字塔结构卷积神经网络

本文深入探讨了一种新型的级联金字塔结构卷积神经网络,它结合残差网络和沙漏网络,用于提高图像关键点定位的精度。在传统网络的基础上,级联网络分为两部分,首先通过残差网络进行全局定位,然后用沙漏网络对困难关键点进行精细调整,尤其适用于处理多变性图像背景和姿态的关键点定位问题。
摘要由CSDN通过智能技术生成

前言

众所周知,随着深度学习技术的发展,深度卷积神经网络在图像分类、识别以及关键点定位上已得到广泛应用。目前在人体姿态、人脸识别等多个方面的关键点定位算法已经取得长足发展,但是应用于多变性的图像背景以及姿态等依然面临很大的挑战,如服饰在类别、比例和外观上具有多变性,其关键点定位精度并不高。下文将在传统的残差与沙漏网络模型基础上,介绍一种新的级联金字塔结构卷积神经网络,实现对困难关键点的定位进行精细调整。并通过实例剖析进一步帮助大家来理解。

传统卷积神经网络

1.沙漏网络

沙漏网络,正如其名,是一种形如沙漏的下采样-上采样结构,如下图所示。图中左侧部分通过卷积和池化操作将特征图降低到较低的分辨率。下采样通过池化操作完成,同时通过另一路卷积保留下采样前的特征图,用于和右侧上采样部分同尺度的特征图进行融合。当下采样部分特征图达到最小分辨率后,网络经过最近邻上采样后与保留的同尺度特征图进行融合,最后网络输出表示各个关节点在该像素出现的概率的特征集。

沙漏网络设计的目的在于获取不同尺度下图像所包含信息。利用多模块的沙漏网络可以定位关键点进而来识别人体姿态特征。

0085bc534d1fb5e64bbbbd150844f1b7.png
沙漏网络

2.深度残差网络

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值