# 定义四边形_平行四边形靶向复习一

平行四边形复习首先要理解知识关联。

a8baac1d1341d754550512a163362815.png

考点复习一:平行四边形和特殊平行四边形的概念及它们之间的关系

例题:有下列命题:①两组对边分别平行的四边形叫做平行四边形;②有一个角是直角的平行四边形是矩形:③有一组邻边相等的平行四边形叫做菱形;④正方形既是矩形,又是菱形;⑤矩形、菱形、正方形是特殊的平行四边形;⑥正方形不是矩形;①正方形不是菱形。其中真命题有_____。

复习考点二:平行四边形及特殊平行四边形的性质定理

研究平行四边形及特殊平行四边形的性质,主要是从边、角、对角线等方面进行研究的。

例题:1、在平行四边形ABCD中,AC,BD相交于点0,它的周长为60,若△AOB的周长比△BOC的周长少10,则平行四边形边长分别多少?

2、矩形的两条对角线相交成的锐角为60°,其较短的一边与一条对角线之和为15,则矩形的对角线长为多少?较长的一边长多少?

3、菱形ABCD的对角线AC,BD之比为3:4,周长为60cm,则菱形的面积为多少?

4、在正方形ABCD中,M是AD上的一点,ME⊥BD,MF⊥AC,垂足分别为点E.F,且ME+AMF=8cm,则AC等于多少?

复习考点三:利用图形的性质证明角相等、线段相等、线段互相平分、直线互相垂直等

例题:如图,正方形ABCD的对角线AC,BD相交于点O,E为0A上任意一点,CF⊥BE于点F,CF交OB于点C.求证:OE=OC.

d73d8dece008cf2864c6203f77c6a4f9.png

变形:如上图,正方形ABCD的对角线AC,BD相交于点O,且OE=OG。求证CG⊥BE。

复习考点四:直角三角形斜边中线的性质

例题:在直角三角形ABC中,斜边长为10cm,则斜边上的中线长是多少?

复习考点五:平行四边形及特殊平行四边形的判定定理

例题:1.如图.下列条件之一能使平行四边形ABCD是菱形的有①AC⊥BD ②∠BAD=90° ③AB=FC ④HC=BD.

2、在平面直角坐标系中,点E,F,M的坐标分别是E(-1,-3),F(3,-3),M(1,4).要使以E,F,M,P为顶点的四边形是平行四边形,则P点坐标应是多少?

3.某同学用四根木根搭成一个平行四边形框架,如图,已知AB=8cm,AD=6cm.现固定AB,转动AD,当∠DAB等于多少时,四边形ABCD的面积最大,此时四边形ABCD是什么形?

4、如图,用一张矩形纸片折叠成一个正方形,小明把矩形上的一个角沿折痕AE翻折上去,使AB与AD边上的AF重合,则四边形ABEF就是一个正方形,他判定的方法是什么?

a7ce14fb60f7b2beccbb8cfaabea4151.png

复习考点六:三角形中位线定义、定理与平行四边形及特殊的平行四边形

例题:1、顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是什么?①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形.

2、已知矩形的长和宽分别为10和8,则顺次连接矩形各边中点所得四边形是什么?其面积为多少?

3、有下列命题:①一组对边平行且一组对角相等的四边形是平行四边形:②有一个角是直角的平行四边形是矩形:③有一条对角线平分一组对角的四边形是菱形;④对角线互相垂直的平行四边形是正方形;⑤顺次连接菱形各边中点所得四边形是矩形;⑥三角形的重心是三角形三边中线的交点,其中真命题有哪些?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值