- 博客(2)
- 收藏
- 关注
原创 CNN卷积神经网络的反向传播算法
1.传统DNN的反向传播计算:损失函数: J(W,b,x,y)=12∣∣aL−y∣∣22J(W,b,x,y) = \cfrac{1}{2}||a^L-y||_2^2J(W,b,x,y)=21∣∣aL−y∣∣22δl=∂J∂zl 表示对l层线性变换输出zl的偏导\delta^l=\frac {\partial J}{\partial z^l} \,\,\text{表示对l层线性变换输出$z^l$的偏导}δl=∂zl∂J表示对l层线性变换输出zl的偏导最后一层输出层: ∂J∂aL=aL−y\
2021-02-17 21:00:01 847
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人