上海盐城生物php招聘_上海科技大学钟超课题组开发出基因可编程淀粉样蛋白功能涂层材料...

上海科技大学科研团队在基因可编程蛋白涂层技术上取得突破

上海科技大学钟超课题组在新型蛋白涂层方面取得重要研究进展,相关成果以“Conformable self-assembling amyloid protein coatings with genetically programmable functionality”为题,近日在国际知名学术期刊《Science Advances》上在线发表。

材料的表面改性在电子、生物医药、催化、纺织等工程和技术领域中扮演着重要的角色。涂层材料的使用是一种常见的材料表面改性技术。目前较为常见的涂层材料包括:聚电解质、蛋白、聚多巴胺、聚多酚等。然而上述材料或多或少在共形性、普适性、稳定性等方面的缺陷,因此应用受到限制。生物大分子类(例如多糖、多肽、短肽或蛋白等)涂层材料因其较好的生物相容性、生物降解性和环境友好性而得到了广泛的关注。在自然界中,细菌依靠生物被膜牢固的依附在各种基底表面。以前的研究表明大肠杆菌的生物被膜富含CsgA淀粉样蛋白纳米纤维,这些纤维保证了生物被膜的机械强度、结构完整性以及基底粘附性(图1)。此外,近年来相关的研究表明,CsgA蛋白具备基因可编程性:即利用基因模块化策略可将功能性多肽或者蛋白功能域融合到CsgA蛋白上,且不影响蛋白自组装形成纳米纤维。

f2ba0fbb03e9fc84a3be2329bf176f59.png

图1 大肠杆菌生物被膜示意图

基于此,钟超课题组提出了基于大肠杆菌生物被膜CsgA蛋白的基因可编程功能涂层材料平台。通过简单的溶液浸泡方式,即可以将该涂层材料应用在多种材料基底(高分子、金属氧化物和无机非金属等)和不同形状的界面上(平面,曲面,纤维和微流体孔道等)(图2)。进一步通过基因工程技术,该涂层又可被赋予独特的功能,例如固定功能蛋白,锚定纳米颗粒等功能。此外,CsgA蛋白具备淀粉样蛋白的稳定结构结构,因此这类涂层材料对有机试剂和高温具有较好的耐受性。

63c8281f25e21ddc1b805543904f3323.png

图2 CsgASpyTag/CsgASnoopTag纳米纤维涂层应用于微颗粒表面

最后,针对这类涂层材料的应用方法简单和功能灵活多样等特点,课题组提出了一系列新颖的应用,包括导电涂层、触摸开关、多酶固定、微流体检测芯片等(图3和4)。本文开发的基于基因可编程自组装淀粉样蛋白涂层有望应用于电子、生物催化、生物医药等,并为设计、实现新型涂层加工技术以及开发新型涂层材料提供了灵感与借鉴。

c3b1453de20b8d2fe793e4fdccbc8c32.png

图3 基于CsgAHis-tag涂层的图案化金电极应用于触摸开关

b81b922f282ae521ccd17bee8c15c34d.png

图4 基于CsgADBD涂层的微流体细菌检测芯片

本文第一作者为上科大物质学院2015级博士生李颖风,2017级博士生李柯为共同第一作者,通讯作者为钟超研究员,上科大为第一完成单位。上科大物质学院分析测试平台和电镜中心为材料表征给予了大力支持。该研究得到了国家自然科学基金委以及上海市科委基金、上海市教委曙光计划等项目的支持。注:钟超研究员目前已正式入职中国科学院深圳先进技术研究院合成生物学研究所,课题组从事材料合成生物学交叉研究领域,正在招聘多名助研和博后, 具体招聘信息请见如下链接:http://isynbio.siat.ac.cn/zhonglab/join.php?id=8 ,感兴趣的人员请联系:chao.zhong@siat.ac.cn; 更多课题组信息可见以下链接:http://isynbio.siat.ac.cn/view.php?id=166 。

来源:高分子科学前沿

---纳米纤维素找北方世纪---

d38bdc445ce9563fbc12b139a060688e.gif

微信加群:

“高分子科学前沿”汇集了20万高分子领域的专家学者、研究/研发人员。我们组建了80余个综合交流群(包括:教师群、企业高管群、硕士博士群、北美、欧洲等),专业交流群(塑料、橡塑弹性体、纤维、涂层黏合剂、油墨、凝胶、生物医用高分子、高分子合成、膜材料、石墨烯、纳米材料、表征技术、车用高分子、发泡、聚酰亚胺、抗菌、仿生、肿瘤治疗)。

添加 小编 微信(务必备注:名字-单位-职称-研究方向)

我们的微博:高分子科学前沿,欢迎和我们互动

我们的QQ交流群:451749996(务必备注:名字-单位-研究方向)

投稿 荐稿 合作:editor@polysci.cn

内容概要:本文详细介绍了如何使用Hugging Face Transformers库进行大模型推理,涵盖环境配置、模型下载、缓存管理、离线使用、文本生成、推理pipeline及模型量化技术。重点讲解了使用LLMs进行自回归生成的核心流程,包括token选择策略、生成参数配置(如max_new_tokens、do_sample)、填充方式(左填充的重要性)以及常见陷阱的规避方法。同时深入探讨了多种量化技术(如GPTQ、AWQ、bitsandbytes的4位/8位量化),并通过实例演示了如何加载本地模型、应用聊天模板、结合Flash Attention优化性能,并实现CPU-GPU混合卸载以应对显存不足的问题。; 适合人群:具备Python编程基础和深度学习基础知识,熟悉Transformer架构,从事NLP或大模型相关工作的研究人员、工程师和技术爱好者;尤其适合需要在资源受限环境下部署大模型的开发者。; 使用场景及目标:①掌握Hugging Face Transformers库的核心API,实现大模型的本地加载高效推理;②理解和避免大模型生成过程中的常见问题(如输过短、重复生成、填充错误等);③应用量化技术降低大模型内存占用,实现在消费级GPU或CPU上的部署;④构建支持批量处理和多模态任务的推理流水线。; 阅读建议:此资源理论实践紧密结合,建议读者边阅读边动手实践,复现文中的代码示例,并尝试在不同模型和硬件环境下进行调优。重点关注生成配置、量化参数和设备映射策略,结合具体应用场景灵活调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值