多元线性回归matlab代码例题_matlab多元线性回归

本文展示了如何在MATLAB中实现多元线性回归,以解决油价预测问题。通过使用`regress()`函数,并构造特征项如X的平方和乘积,提高了模型的拟合精度。文中给出了残差图和相关指标,解释了如何评估模型的性能,并讨论了利用回归模型进行预测的方法。
摘要由CSDN通过智能技术生成

1.matlab多元回归示例如下:

解决问题:油价预测

方法:多元线性回归

实现:matlab regress()函数

技巧:通过增加X1^2,X2^2,或者X1*X2等构造的特征项,可以提高回归模型的拟合准确度;但计算代价增大。

function result=reg_new_month(XX1_bu,YYnum)

y=YYnum;

a=XX1_bu; %由于alldata_pca已经进行归一化了;所以在回归分析中直接用就行%a=load('alldata.txt');

x1=a(:,1) ;

x2=a(:,2) ;

x3=a(:,3) ;

x4=a(:,4) ;

x5=a(:,5) ;

x6=a(:,6) ;

x7=a(:,7) ;

x8=a(:,8) ;

x9=a(:,9) ;

x11=x1.^2;

x12=x2.^2;

x13=x3.^2;

x14=x4.^2;

x15=x5.^2;

x16=x6.^2;

x17=x7.^2;

x18=x8.^2;

x19=x9.^2;

x21=x1.*x2;

x22=x2.*x3;

x23=x3.*x4;

x24=x4.*x5;

x25=x5.*x6;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值