1 变量、运算符与数据类型
1.1 注释
- 在python中,#表示注释,作用于整行
2. ''' '''或者""" """ 表示区间注释,在三个引号之前的所有内容被注释
1.2 运算符
算数运算符
操作符 | 名称 | 示例 |
---|---|---|
+ | 加 | 1+1 |
- | 减 | 2-1 |
* | 乘 | 1*1 |
/ | 除 | 2/1 |
// | 整除 | 5//2 |
% | 取余 | 6%5 |
** | 幂 | 2**3 |
比较运算符
操作符 | 名称 | 示例 |
---|---|---|
> | 大于 | 3>2 |
>= | 大于等于 | 4>=1 |
< | 小于 | 1<3 |
<= | 小于等于 | 1<=3 |
== | 等于 | 1==2 |
!= | 不等于 | 1!=2 |
逻辑运算符
操作符 | 名称 | 示例 |
---|---|---|
and | 与 | (2>1) and (3>4) |
or | 或 | (2>1) or (3>4) |
not | 非 | not(2>1) |
位运算符
操作符 | 名称 | 示例 |
---|---|---|
~ | 按位取反 | ~4 |
& | 按位与 | 4&5 |
| | 按位或 | 4 | 5 |
^ | 按位异或 | 4 ^ 3 |
<< | 按位左移 | 11 << 2 |
>> | 按位右移 | 11 >> 2 |
其他运算符
操作符 | 名称 | 示例 |
---|---|---|
is | 是 | "h" is "h" |
not is | 不是 | 1 not is 2 |
in | 存在 | 3 in [1,2,3,4,5] |
not in | 不存在 | 7 not in [1,2,3,4,5] |
运算符的优先级
1)一元运算符优于二元运算符。如正负号
2)先算术运算,后移位运算,最后位运算。例如 1 << 3 + 2 & 7等价于 (1 << (3 + 2)) & 7
3)逻辑运算最后结合
1.3 变量和赋值
1. 在使用变量之前,需要对其先赋值。
2. 变量名可以包括字母、数字、下划线、但变量名不能以数字开头。
3. Python 变量名是大小写敏感的,foo != Foo。
1.4 数据类型与转换
类型 | 名称 | 示例 |
---|---|---|
int | 整型 | 10 |
float | 浮点型 | 10.12 |
bool | 布尔型 | True,False |
- 获取类型信息
- type(object)
- isinstance(object, classinfo)
注意
1. type() 不会认为子类是一种父类类型,不考虑继承关系。
2. isinstance() 会认为子类是一种父类类型,考虑继承关系。
2. 类型转换
1. 转换为整型 int(x, base=10)
2. 转换为字符串 str(object='')
3. 转换为浮点型 float(x)
1.5 print函数
1. 将对象以字符串表示的方式格式化输出到流文件对象file里。其中所有非关键字参数都按 str() 方式进行转换为字符
串输出;
2. 关键字参数 sep 是实现分隔符,比如多个参数输出时想要输出中间的分隔字符;
3. 关键字参数 end 是输出结束时的字符,默认是换行符 n ;
4. 关键字参数 file 是定义流输出的文件,可以是标准的系统输出 sys.stdout ,也可以重定义为别的文件;
5. 关键字参数 flush 是立即把内容输出到流文件,不作缓存。
2 位运算(二进制运算)
2.1 原码、反码和补码
二进制有三种不同的表示形式:原码、反码和补码,计算机内部使用补码来表示。
原码:就是其二进制表示(注意,有一位符号位)。
反码:正数的反码就是原码,负数的反码是符号位不变,其余位取反(对应正数按位取反)。
补码:正数的补码就是原码,负数的补码是反码+1。
符号位:最高位为符号位,0表示正数,1表示负数。在位运算中符号位也参与运算。
2.2 按位非操作~
~ 把 num 的补码中的 0 和 1 全部取反(0 变为 1,1 变为 0)有符号整数的符号位在 ~ 运算中同样会取反。
2.3 按位与操作&
只有两个对应位都为 1 时才为 1
2.4 按位或操作 |
只要两个对应位中有一个 1 时就为 1
2.5 按位异或操作^
只有两个对应位不同时才为 1
异或操作的性质:满足交换律和结合律
2.6 按位左移操作<<
num << i 将 num 的二进制表示向左移动 i 位所得的值
2.7 按位右移操作>>
num >> i 将 num 的二进制表示向右移动 i 位所得的值
2.8 利用位运算实现快速计算
1) 通过 << , >> 快速计算2的倍数问题
2) 通过 ^ 快速交换两个整数
3)通过 a & (-a) 快速获取 a 的最后为 1 位置的整数
2.9 利用位运算实现整数集合
一个数的二进制表示可以看作是一个集合(0 表示不在集合中,1 表示在集合中)。
比如集合 {1, 3, 4, 8} ,可以表示成 01 00 01 10 10 而对应的位运算也就可以看作是对集合进行的操作。