近日,西安大唐不夜城,一位身穿盛唐服装的“不倒翁小姐姐”,因其轻盈飘逸、妩媚多姿的表演成为“网红”,为了跟她“牵手”,甚至有民众将表演区的隔离栏挤坏了好几根。这位“不倒翁小姐姐”到底有何魅力呢?下面就让我们一探究竟吧。
这位“不倒翁小姐姐”在表演时,也是有她特定的演出服的,那就是盛唐时期的服饰,并且与大唐不夜城这个背景是十分契合的。去过西安的朋友都知道,大唐不夜城的夜景之美在西安甚至是全国都是非常著名的,与大唐不夜城共同被人提及到的便是大唐芙蓉园了,这两个“大唐”都是以唐朝为历史依据的,这位“不倒翁小姐姐”在大唐不夜城身着唐朝服装,化上唐朝时的女子妆容,精彩多姿的表演,让人一瞬间仿佛梦回大唐。
不倒翁是一种历史悠久的玩具,特别受到各个年代儿童们的喜爱。清代文人魏崧在《壹是纪始》写到:“不倒翁始于唐。”他据《唐摭言》中的记载:“卢连举不第,赋《酒胡子》长篇以寓意,序日:‘巡觞之胡,旋转由人。’今谓之不倒”,这便是不倒翁的最初模型。而后渐渐流传至今,演变成为哄逗幼儿的玩具,给儿童乃至大人们增添了无穷乐趣。那么,我们学习了《工程力学》之后,来较为确切的从力学上来分析不倒翁的原理,并了解其在日常生活生产中的相关应用。
0 2 力学原理最常见的不倒翁是纸身、泥底,即用纸浆灌模或用废纸粘糊成形,再用泥土制成半圆形的底座,将二者粘合好之后,再在外表糊上净纸,施以彩绘而成;也有的用木头做底,底部中心固定上铁块和小石子;还有用小葫芦挖净内瓤,内部灌铅做成的“葫芦”;今天还有用鸡蛋壳、旧乒乓球做成的小不倒翁。所有的这些不倒翁都有相同的特点:上半身为空心壳体、下半身是一个实心的半球体,底部为圆形。这些特点使它们具有了一致的基本力学结构,都能达到“不倒”的效果。
我们假设大唐不倒翁上半身为空心壳体,重量很轻;大唐不倒翁的下半身是一个实心的半球体,重量较大,大唐不倒翁的重心就在半球体之内。下面的半球体和支承面之间有一个接触点,这个半球体在支承面上滚动时,接触点的位置就要发生改变。大唐不倒翁始终用一个接触点站立在支承面上,它永远是一个独脚体。
大唐不倒翁在受到外力的作用时,就要失去平衡,而在外力去除后,大唐不倒翁能自行回复到平衡状态,这说明大唐不倒翁具有一种抵抗外力干扰保持平衡的能力,这就是平衡的稳定性。这种抵抗干扰保持平衡的能力的形成,应该从大唐不倒翁的受力情况来看。
3大唐不倒翁的受力情况有三种① 大唐不倒翁平衡的受力情况:
大唐不倒翁在地面上,受到两个外力的作用:一个是重力G,地球对大唐不倒翁的吸引力;另一个是支持力,桌面对大唐不倒翁底面半球体的反作用力。根据物体的平衡条件,只要这两个力大小相等、方向相反、作用在一条直线上,大唐不倒翁就能够保持平衡的状态。
假设受外力时,大唐不倒翁重心为O,接触点为C,重力为G,倾斜了α角度,F到C点距离为m,AO,OC分别为l和d 。
② 大唐不倒翁倾斜的受力情况:
当大唐不倒翁受到外力时,外力产生的干扰力矩,重力形成一个抵抗力矩,干扰力矩为:M1=F*m,抵抗力矩为:M2=Gcosθ*d
此时两个力矩方向相反,且随着大唐不倒翁倾斜的角度α不断增大,重力作用线G的偏移量也不断增大,抵抗力矩M2即Gcosθ*d的值也不断增大,当抵抗力矩M2等于干扰力矩M1时,大唐不倒翁就进入新的平衡状态——倾斜的平衡状态,此时外力的干扰作用也就宣告停止。
由此可知,大唐不倒翁受到外力干扰后,原有的平衡破坏了,但新的平衡随之形成,大唐不倒翁可以接续地保持平衡,虽然平衡的方式不同,但平衡的本质不变,这种便是动态平衡。此时大唐不倒翁不倒。
③大唐不倒翁复原的受力情况:
(1)从势能角度考虑,势能低的物体比较稳定,物体一定会向着势能低的状态变化。当大唐不倒翁倒下的时候,由于集中了大部分重心的底座被抬高,造成势能增加,所以大唐不倒翁要回复原来的位置。
(2)从杠杆原理来说,大唐不倒翁倒下时,重心的作用点一直处于端部,不管支点在哪里,虽然底座的力臂较短,但是力矩=力*力臂,大唐不倒翁还是会因为底座那头力矩大而回复到原来位置。如本例中,去掉外力后仍有力矩M2,力矩M2使得大唐不倒翁恢复到一开始的平衡位置。
(3)大唐不倒翁底部为圆形,摩擦力小,便于大唐不倒翁回到原来位置。
在以上的整个过程中,建立新的平衡是其中主要的问题,因为只有如此才能抵制外力的干扰,而恢复原有的平衡则是次要问题,因为此时外力的干扰已经去除。在整个过程中不倒翁始终保持平衡的属性,这便是“平衡的稳定性”。
4力学原理小结综上所述,这个原理的要点在于:使重力的作用线偏离支点,使重力对支点产生力矩,即抵抗力距。由于大唐不倒翁倾斜的角度不断增大,重力作用线的偏移量随之增大,抵抗力矩也随之增大,最终实现和外力力矩的平衡,大唐不倒翁抵抗外力干扰、保持平衡的能力就是这样形成的。
03 大唐不倒翁仿真模拟 基于好奇心驱使小数对大唐小姐姐进行了仿真模拟。 假设底座半圆半径 m,质量 kg,初始角度为 ,模拟步长 s。模拟的主要步骤如下:- 根据角速度更新角度:
- 根据角加速更新角速度:,其中角加速度 由运动方程给出。
- 确定半圆圆心 的水平位置:x = πθr/180
- 根据半圆圆心 的水平位置,以及半圆的转动角度,确定半圆位置。
- 更新时间 。如果 晚上,结束,否则跳到第 1 步。
为了模拟视觉效果,首先需要画一个半圆和一个性感的小姐姐。
为了将小姐姐妙曼的身姿展现得淋漓尽致,那大长腿,那伸出的纤纤玉手 ······小数“安排”了一下插画师,让他加了亿点点细节。
根据运动方程,算出某时刻半圆心的位移以及角度后,需要对半圆和小姐姐进行平移和旋转。平移容易,旋转可根据以下公式进行。
模拟结果如下,小数表示很满意~(模拟细节完整代码请在校苑数模公众号会话窗口回复【不倒翁】获取)。

世人谓我恋长安,其实只恋长安某。
你愿意为了这位“不倒翁小姐姐”
再回长安吗?
部分图片来源于网络 部分内容转载自微信公众号“数学模型”
