pca 矩阵 迹_PCA

降维算法

PCA主成分分析, 是无监督的降维方法, 可以将你的数据降低到n-1维.

它有几种不同的方式去解释原理, 下面我们来一起看看吧.

最大方差理论

方差大, 代表信息量比较大(数据分布较为分散, 区分度越高).

样本数据是在一个n维度空间中, 我们需要找到[1, n-1]之间的维度空间的轴, 然后将样本投影到这些轴上, 下面我们来看一下, 这里我们用二维假设(便于理解, 高维类推即可).

image

可以看到, 如果投影到方差较大轴上, 数据还会保持尽可能大的距离, 如果投影到方差较少的轴上, 样本之间是非常接近的, 这就很难处理了.

我们首先对数据进行一个去中心化处理(这只是放到坐标原点附近, 不会改变数据之间原有的关系), 假设我们原本的数据集D => {X1, X2, ...}, 去中心化后的数据集D1 => {V1, V2, ...}.

我们有如下关系成立:

我们将样本投影到对应的坐标轴上, 我们有:

在几何表示上, 两个向量的内积就表示了一个向量在另一个向量上的投影了,

是单位向量(新坐标轴的).

那么, 新坐标轴的方差是:

, 因为我们是在原数据集上做了去中心化处理.

我们的方差公式转换为:

可以看出来, 其实

就是自身的协方差矩阵的迹去中心化之后, 均值是零), 我们将它表示为

, 同时, W是新坐标轴上的单位向量, 所以有,

我们现在有了最大化问题以及约束了

我们引入拉格朗日乘子, 然后对W求导, 令其等于0.

这个式子就很直接了, 其实就是XX^T协方差矩阵的特征值分解,

其实就是前[1, n-1]较大的特征值.

最小方差理论(最小二乘法)

image

还是这个图, 这一次我们从线性回归拟合的角度出发.

我们希望找到一条线, 可以尽可能的拟合这些点.

点到线(高维是超平面), 可以平面的法向量, 然后连接到线(超平面)上一点.

假设平面的点为

距离可以表示为:

如果该线(超平面)由K组正交基表示,

组成, 这里二维降到一维其实只有一个w, 作为基的话, 其实还有一个特性

, 然后我们会有, 直线上的(超平面)中可以由这组基来表示:

其中

表示

方向上投影的长度, 因此,

其实实际上是

在这一组正交基上的坐标表示(通过乘以W).

所以, 我们的优化目标:

当对应位置相同的时候是零,不同的时候是1.

我们将距离公式展开:

第一项是个常数(原坐标系), 将

的表示代入到这个式子:

第三项为:

其实都是常数, 所以我们也忽略掉, 而且当

时候,

, 最后这个交叉项只剩下

这里面最后的表达式其实就是

的迹, 所以最后距离表示是可以转换为

取一个相反数, 变成求最大化的问题.

然后就和前面一样了, 通过引入拉格朗日乘子, 然后求导为零即可.

注意

如果样本数(n)大于特征维数(N), 最多可以降维到多少

降维是基于特征降维的, 去掉不重要的特征, 所以可以降维的范围是[1, N-1].

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值