C语言怎样判断乘法越界,如何判断C语言算术运算的越界问题

大量的安全漏洞是由于计算机算术运算的微妙细节引起的, 具体的C语言, 诸如符号数和无符号数之间转换, 算术运算的越界都会导致不可预知的错误和安全漏洞, 具体的案例数不胜数.

作为一个系统程序员, 有必要对这些细节有深入的了解. 本篇参考csapp, 主要介绍如何判断算术运算的越界问题.

(虽然本篇的代码经过大量的测试, 但本人仍然无法保证代码的正确性, 希望大家纠错).

讲解的原则是"摆定理, 不证明, 写代码". 具体的证明过程在csapp中有详细的讲解, 也不是太难. 主要使用关键定理来写代码. Go~

问题一: 无符号数的加法越界问题

[定理]

1515465769349588.png

[理解]

这个定理比较容易, 也比较能让人接受. 不解释啦.

/* Determine whether arguments can be added without overflow */

int uadd_ok(unsigned int x, unsigned int y)

{

return !(x+y }

问题二: 无符号数的减法越界问题

[定理]

1515465769510256.png

1515465769478296.png

[理解]

1. 计算机中没有减法, x-y = x+(-y), 这里的-y就是上述的y的加法逆元. 不管是有符号还是无符号, 都是转换为加法运算. 只是加法逆元的定义不同.

1515465769961526.png

3. C语言保证 -x = ~x+1; 可以验证这种方式与上面公式等价.

4. s=x-y = x+(-y). 那么 不会溢出 等价于 y不为0 或者 !uadd_ok(x, -y).

1515465769904982.png

/* Determine whether argumnts can be substracted without overflow */

int usub_ok(unsigned int x, unsigned int y)

{

return !y || !uadd_ok(x, -y);

}

问题三: 无符号数的乘法越界问题

[定理]

1515465769705172.png

[理解]

等价条件可以相互推导即可.

/* Determine whether arguments can be multiplied without overflow */

int umul_ok(unsigned int x, unsigned int y)

{

unsigned int p = x * y;

return !x || p/x==y;

}

问题四: 有符号数的加法越界问题

[定理]

对于两个有符号数x, y. 越界的等价条件是x,y为负数, x+y为正数或者x,y为正数, x+y为负数.

[理解]

这个定理比较容易.

/* Determine whether arguments can be added without overflow */

int tadd_ok(int x, int y)

{

return !(x0 || x>0&&y>0&&x+y }

问题五: 有符号数的减法越界问题

[定理]

1515465770653318.png

1515465770277600.png

[理解]

同无符号的减法一样, 只是加法逆元的定义不同, 但是位模式是一样的. C语言可以保证-x=~x+1. 同样也分两种情况讨论.见代码.

/* Determine whether arguments can be subtracted without overflow */

int tsub_ok(int x, int y)

{

#if 0

if (y == INT_MIN)

return x   else

return tadd_ok(x, -y);

#endif

return y==INT_MIN&&x }

问题六: 有符号数的乘法越界问题

[定理]

完全同无符号的乘法一样.

/* Determine whether arguments can be multiplied without overflow. */

int tmul_ok(int x, int y)

{

#if 0

int p = x * y;

return !x || p/x==y;

#endif

return umul_ok(x, y); /* 直接调用 */

}

以上就是关于如何判断C语言算术运算的越界问题的全部内容,更多内容请继续关注武林技术频道网站!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值