共回答了22个问题采纳率:90.9%
1、我估计你是这个意思:
F=A(1+i)^0+A(1+i)^1+A(1+i)^2+……+A(1+i)^(n-2)+A(1+i)^(n-1)
是怎样推导出公式:F=A(1+i)^[(n-1)/i]的?【注意:在网上“^”表示“次方”的意思】
2、这里用到一个公式:a^0+a^1+a^2+a^3+……+a^(n-2)+a^(n-1)
这是一个“等比数列”,其公比为“(1+i)”
3、根据《“和”的思想》理论体系之《函数思想》中简化后的等比数列前n项和公式可得:
S[n]=a[1](1-q^n)/(1-q)【q≠1】
4、由此可看出{a[n]}为“指数函数”,且图像必过(0,a[1]/q)点和(1,a[1])点;
因此,这道题考的是《函数思想》
5、用《“和”的思想》同时还可以推导出:
(1)、等差数列:通项公式:a[n]=dn+b(其中,d为公差,b=a[1]-d)
前n项和公式:S[n]=An^2+Bn(其中,A=d/2,B=a[1]-d/2)
【即公式中“b、A、B”都是定量,而n是变量(注意:[]符号里面的字符为定量右下角的标签),显而易见:a[n]为“一元一次函数”;S[n]为“一元二次函数”】
(2)、等比数列:通项公式:a[n]=a[1]q^(n-1)=cq^n【c=a[1]/q】
前n项和公式:S[n]&#