
个人声明
本系列文章记录本人自学线性代数教材《Linear Algebra Done Right》的概念梳理(复习)和部分习题解答(练习)。如有任何错误或不严谨之处恳请读者在评论区留言提醒。
本书信息
书名:Linear Algebra Done Right (3rd Edition)
语言:英文
作者:Sheldon Axler
ISSN: 0172--6056(纸质);2197-5604(电子)
ISBN: 978-3-319-11079-0(纸质);978-3-319-11080-6(电子)
出版社:Springer
出版年份:2015
参考链接
电子PDF链接(英文):Linear Algebra Done Right
习题答案链接(英文):Solution Manual
本书目录(译)
注:点击链接跳转至对应的章节内容,加粗字体表示本文所在的章节内容。
(链接更新中)
一、向量空间——
二、有限维向量空间——生成空间与线性无关;基;维数
三、线性映射——线性映射的向量空间;零空间与值域;矩阵;可逆性与同构向量空间;向量空间的积与商;对偶性
四、多项式
五、特征值、特征向量与不变子空间——不变子空间;特征向量与上三角矩阵;特征空间与对角矩阵
六、内积空间——内积与范数;标准正交基;正交补与最小化问题
七、内积空间上的算子——自伴算子与正规算子;谱定理;正定算子与等距同构;极分解与奇异值分解
八、复向量空间上的算子——广义特征向量与幂零算子;算子的分解;特征多项式与最小多项式;Jordan型
九、实向量空间上的算子——复化;实内积空间上的算子
十、迹与行列式——迹;行列式
笔记附录
附录一、一些基础离散数学与抽象代数概念笔记
附录二、附录一中的定理证明
3.A 线性映射的向量空间(The Vector Space of Linear Maps)
关键词:线性映射、零映射、恒等映射、定义域的基、线性映射上的代数运算
线性映射的定义与例子(Definition and Examples of Linear Maps)
在前两章中已经重点讨论了线性空间及其相关的基本概念(子空间、生成空间、线性无关、基、维数)。在本章中将重点讨论两个或多个线性空间之间的联系。由此引申出概念——线性映射。具体来说,类比于群同态,我们希望找到这样一种从一个线性空间到另一个线性空间的函数,该函数使得我们可以通过从一个相对复杂的线性空间映射到另一个相对简单的线性空间并保持运算规律不变(原像上的两个元素之间的运算结果对应的像上的元素等于这两个元素对应的像上的两个元素之间的运算结果——准确来说,
摘录译文(页52)
3.2 定义 线性映射
从至
线性映射是具有以下性质的函数的
可加性:
对于所有的
齐次性;
对于所有的
与所有的
。
注意对于线性映射除了更标准的函数记号外我们也通常使用记号
。
3.3 记号![]()
从至
的所有线性映射的集合记为
。
以上正式定义了线性映射
以下是线性映射的例子,读者可以自行验证。
摘录译文(页52-53)
3.4 例 线性映射 零映射
除了的其他用途,我们把某些向量空间里的每个元素映射至另一个向量空间里的加法单位元的函数记为
。具体来说,
被定义为
。
上述等式左边的是从
至
的一个函数,然而右边的
是
中的加法单位元。通常地,上下文应该让你分清符号
恒等映射 恒等映射(记为的许多用途。
)是把某些向量空间上的每个元素映射至每个元素自身的函数。具体来说,
被定义为
微分。
定义为
。
这个函数是线性映射的推断是以另一种方式描述关于微分的基本结论:与
每当
可微且
积分是常数时。
定义为
。
这个函数是线性映射的推断是以另一种方式描述关于积分的基本结论:两个函数之和的积分等于每个函数的积分之和与乘以一个常数的函数的积分等于该常数乘以该函数的积分。 乘以![]()
定义为
对于
后移。
回顾表示所有由
的元素组成的序列的向量空间。
定义为
从。
至![]()
![]()
定义为
从。
至![]()
![]()
推广上例,令与
是正整数,令
对于
与
且定义
为
。事实上从
至
的每个线性映射都是这个形式。
这里我们着重讨论最后两个例子。仔细观察这两个例子我们得出结论:解一个线性方程组等价于求上述定义的线性映射的像里的某个元素对应的原像。例如线性映射
这个线性方程组的解为
所以对应的原像是
或者化简成
若令
这个线性方程组的解为
所以对应的原像是
这种特殊的线性方程组称作齐次线性方程组,因为方程每一项都是次数为一且没有次数为零的常数项。反之,不满足此条件含有常数项的线性方程组就是非齐次线性方程组。读者可以验证齐次线性方程组的解集是线性空间而非齐次线性方程组的解集不是线性空间。因此齐次线性方程组的解集也称作解空间。
同时还可以得出结论:非齐次线性方程组的解集等于解空间加上非齐次线性方程组的一个解。
设
回到倒数第二个例子的证明:
对于所有的
因此
以下定理告诉我们线性映射完全取决于定义域的基的值。
PS:3Blue1Brown的线性代数专栏视频中有一期就讲到了线性变换的本质,该视频中提到了我们只需要知道每个线性空间下基的变换就可以跟踪所有的向量的变换了。
摘录译文(页54)
3.5 线性映射与定义域的基
设是
的基且
。则存在唯一的线性映射
使得
对于每个
。
证
我们先证具有所需性质的线性映射的存在性。定义
为
![]()
其中是
的任意元素。由于列表
是
的基,因此上述等式的确定义了从
至
的一个函数
(因为可把
的每个元素唯一地写成形式
)。
对于每个,在上述等式中取
且其余的
等于
证明了
。
若且
且
,则
![]()
类似地,若且
,则
![]()
因此是从
至
的一个线性映射。
为证唯一性,现在设且
对于
。令
。由
的齐次性推出
对于
。现在由
的可加性推出
![]()
因此根据上述等式唯一取决于
。因为
是
的基,所以推出
唯一取决于
。
这里证明了命题:存在唯一的线性映射
- 存在线性映射
使得
。
- 若存在线性映射
使得
,则该线性映射
是唯一的。
第一个分命题证明了
为了证明某个数学对象的存在性,我们可以先构造一个特征更少的对象(例如先构造一个函数),然后根据相关引理或性质去证明构造的对象蕴含着其他特征(例如可加性与齐次性)从而满足成为某个数学对象的充分条件。唯一性的证明技巧同上节2.C中所提及的——先构造出任意两种不同的对象,然后再证明这两种对象只有相等的可能性。
该定理及其证明是核心知识点。它告诉我们线性映射取决于定义域的基的值——意味着一个线性映射在定义域上的作用完全取决于该线性映射在该定义域的基上的作用。准确来讲,若
摘录译文(页55)
3.6 定义上的加法与数乘![]()
设且
和。
积与
被定义为从
至
的线性映射
与
对于所有的
。
3.7是向量空间
根据上述加法与数乘运算的定义,是向量空间。
3.8 定义 线性映射的积
若且
积,则
被定义为
对于
。
这里在
证明:对于所有的
因为
对于所有的
因此
证明:对于所有的
因为
对于所有的
因此
证明:对于所有的
因为
对于所有的
因此
注意
摘录译文(页56)
3.9 线性映射的积的代数性质 结合律![]()
每当,
与
是线性映射使得它们之间的积有意义(意味着
映射至
的定义域且
映射至
单位元的定义域)。
![]()
每当(第一个
是
上的恒等映射且第二个
是
分配律上的恒等映射)。
与
![]()
每当且
。
因为线性映射的和
摘录译文(页56)
3.10 例
设是例(3.4)中定义的微分的映射且
是之前定义的乘以
的映射。证明
。
解
我们有但
。
换句话说,先微分后乘以与先乘以
后微分是不一样的。
以下结论告诉我们线性映射将某个向量空间的单位元映射至另一个向量空间的单位元。
摘录译文(页57)
3.11 线性映射把映射至
![]()
设是从
至
的线性映射。则
。
证
根据可加性,我们有。
等式两边加上的加法逆元得出
。
习题3.A
摘录译文(页57)
习题3:设。证明存在标量
对于
与
使得
![]()
对于每个。
[此习题证明了例3.4最后一例中的推断——具有如上形式。]
解
已知
因为每个
摘录译文(页57)
习题4:设且
是
中的向量列表使得
是
中的线性无关列表。证明
线性无关。
解
假设
摘录译文(页57)
习题5:证明3.7中的推断。
解
证明加法交换律:对于所有的
证明加法与数乘结合律:对于所有的
与对于所有的
证明加法与数乘单位元:对于所有的
与对于所有的
因为存在映射
证明加法逆元:对于所有的
对于所有的
即存在
证明分配律:对于所有的
与对于所有的
因此
摘录译文(页57)
习题6:证明3.9中的推断。
解
证明结合律:对于所有的
证明单位元:对于所有的
同理,对于所有的
证明分配律:对于所有的
摘录译文(页58)
习题8:给出函数的一个例子使得
对于所有的
与所有的
但
不是线性映射。
[此习题和下个习题证明了仅有齐次性或可加性不足以推出一个函数是线性映射。]
解
设
但对于所有的
显然
因此
摘录译文(页58)
习题11:设是有限维向量空间。证明在
的子空间上的每个线性映射可扩充成
上的线性映射。换句话说,证明若
是
的子空间且
,则存在
使得
对于所有的
。
解
令
摘录译文(页58)
习题14:设是
的有限维向量空间。证明存在
使得
。
解
令
因此
上一节:维数
下一节:零空间与值域