上面两点下面一个三角形_阿基米德三角形

221849637de99171dbd43793c0dd16a5.png

各位,我是槿灵兮,高考假期之后好久没上知乎了~

最近有好多知友问我圆锥曲线的文章出来了没,在此做一下统一回复,由于本人新高三,目前学校抓的比较紧,于是空闲时间会很少,而且以后可能只会更新一些较为简介的小东东~

这次放假我的书好多都没拿回来,于是就简单介绍一个之前我高一发现的小结论,其实后来我才知道它叫——阿基米德三角形~


我先发一下很久以前我写的一篇文章(当时高一不知天高地厚,希望各位多多包涵,这一部分也可以直接跳过):

df7362a03dce2e4435e8725f3f1e1df7.png

65e6a8294bdaf0c47e520324a49323f7.png

f54dc6a1f0a21475798acba2b48c93f7.png

4dc51bbbd6d3c65145f7e1ba36581a8b.png

bfa68c18d8c487934d8c3b883486affe.png

4a40f19dd3dc4094161a835a63910a5d.png

下面我们开始展开来谈:

0e8645086492fa6e9543ea47a84c965a.png

过抛物线

外一点
引抛物线的两条切线
,分别交抛物线于
,则
为抛物线的一条弦,
为其中点,
为与
所在直线平行的直线
与抛物线
的切点,直线
分别交
于点
,令抛物线的焦点
(由于点
已经用过了,而且该点
我未在图中表明)。

那么我们有以下结论:

1.点

三点共线,该直线平行于抛物线的对称轴,且点
为线段
的中点.

证明可参看上文。

2.

.

3.

.

其下可以看成是上面结论的一个推论.

如果

,那么我们还有以下结论:

3.满足该条件的点

的轨迹方程是该抛物线
的准线方程.

4.直线

经过抛物线的焦点
.

5. 两条直线满足:

.

6.

(该条性质可由5加上射影定理推出).

下面简单来两个应用:

例1:在直线

上一点
向抛物线
引两条切线,切点分别为
,则线段
的中点
的轨迹为( )

直线
椭圆
双曲线
抛物线

这是我们的一次周考题,我们老师上课讲解的时候,一开始很尴尬差点没解出来,但最后还是凭着他强大的代数功底解出了答案(我的恩师曾荣获湖南省教师解题大赛一等奖),下面我们从之前的结论来看看这个问题。

fa6c2f20f729aac1f2cd286f764c2ad6.png

解:连接点

,且直线
交抛物线于点
,则点
为线段
中点.

那么:

.

则:

.

又因为:

于是:

.

故点

的轨迹方程是:
,答案是
.

下面来看看我们 @Dylaaan 大大的神押题的全国三卷。

135f56522b67d2292f8bfe444e3a4479.png

这个题大家第一问是不是能秒杀?

解:(1):直线

经过抛物线
的焦点
.

希望大家能了解并熟练以上的几个小结论,对写一些以阿基米德三角形为背景的选填压轴和大题会极为有用,其实这类例题挺多的,在此小小展示两个,大家可以去组卷网搜搜来练练手。

时间不多,小小更了篇文,望大家多多支持~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值