各位,我是槿灵兮,高考假期之后好久没上知乎了~
最近有好多知友问我圆锥曲线的文章出来了没,在此做一下统一回复,由于本人新高三,目前学校抓的比较紧,于是空闲时间会很少,而且以后可能只会更新一些较为简介的小东东~
这次放假我的书好多都没拿回来,于是就简单介绍一个之前我高一发现的小结论,其实后来我才知道它叫——阿基米德三角形~
我先发一下很久以前我写的一篇文章(当时高一不知天高地厚,希望各位多多包涵,这一部分也可以直接跳过):
下面我们开始展开来谈:
过抛物线
外一点
引抛物线的两条切线
,分别交抛物线于
,则
为抛物线的一条弦,
为其中点,
为与
所在直线平行的直线
与抛物线
的切点,直线
分别交
于点
,令抛物线的焦点
(由于点
已经用过了,而且该点
我未在图中表明)。
那么我们有以下结论:
1.点
三点共线,该直线平行于抛物线的对称轴,且点
为线段
的中点.
证明可参看上文。
2.
.
3.
.
其下可以看成是上面结论的一个推论.
如果
,那么我们还有以下结论:
3.满足该条件的点
的轨迹方程是该抛物线
的准线方程.
4.直线
经过抛物线的焦点
.
5. 两条直线满足:
.
6.
(该条性质可由5加上射影定理推出).
下面简单来两个应用:
例1:在直线
上一点
向抛物线
引两条切线,切点分别为
,则线段
的中点
的轨迹为( )
直线
椭圆
双曲线
抛物线
这是我们的一次周考题,我们老师上课讲解的时候,一开始很尴尬差点没解出来,但最后还是凭着他强大的代数功底解出了答案(我的恩师曾荣获湖南省教师解题大赛一等奖),下面我们从之前的结论来看看这个问题。
解:连接点
,且直线
交抛物线于点
,则点
为线段
中点.
那么:
.
则:
.
又因为:
于是:
.
故点
的轨迹方程是:
,答案是
.
下面来看看我们 @Dylaaan 大大的神押题的全国三卷。
这个题大家第一问是不是能秒杀?
解:(1):直线
经过抛物线
的焦点
.
希望大家能了解并熟练以上的几个小结论,对写一些以阿基米德三角形为背景的选填压轴和大题会极为有用,其实这类例题挺多的,在此小小展示两个,大家可以去组卷网搜搜来练练手。
时间不多,小小更了篇文,望大家多多支持~