上面两点下面一个三角形_阿基米德三角形

博主槿灵兮因新高三空闲时间少,此次简单介绍高一发现的阿基米德三角形。阐述了过抛物线的相关结论及推论,还给出两个应用实例,包括周考题和全国三卷题目,鼓励大家掌握结论用于解题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

221849637de99171dbd43793c0dd16a5.png

各位,我是槿灵兮,高考假期之后好久没上知乎了~

最近有好多知友问我圆锥曲线的文章出来了没,在此做一下统一回复,由于本人新高三,目前学校抓的比较紧,于是空闲时间会很少,而且以后可能只会更新一些较为简介的小东东~

这次放假我的书好多都没拿回来,于是就简单介绍一个之前我高一发现的小结论,其实后来我才知道它叫——阿基米德三角形~


我先发一下很久以前我写的一篇文章(当时高一不知天高地厚,希望各位多多包涵,这一部分也可以直接跳过):

df7362a03dce2e4435e8725f3f1e1df7.png

65e6a8294bdaf0c47e520324a49323f7.png

f54dc6a1f0a21475798acba2b48c93f7.png

4dc51bbbd6d3c65145f7e1ba36581a8b.png

bfa68c18d8c487934d8c3b883486affe.png

4a40f19dd3dc4094161a835a63910a5d.png

下面我们开始展开来谈:

0e8645086492fa6e9543ea47a84c965a.png

过抛物线

外一点
引抛物线的两条切线
,分别交抛物线于
,则
为抛物线的一条弦,
为其中点,
为与
所在直线平行的直线
与抛物线
的切点,直线
分别交
于点
,令抛物线的焦点
(由于点
已经用过了,而且该点
我未在图中表明)。

那么我们有以下结论:

1.点

三点共线,该直线平行于抛物线的对称轴,且点
为线段
的中点.

证明可参看上文。

2.

.

3.

.

其下可以看成是上面结论的一个推论.

如果

,那么我们还有以下结论:

3.满足该条件的点

的轨迹方程是该抛物线
的准线方程.

4.直线

经过抛物线的焦点
.

5. 两条直线满足:

.

6.

(该条性质可由5加上射影定理推出).

下面简单来两个应用:

例1:在直线

上一点
向抛物线
引两条切线,切点分别为
,则线段
的中点
的轨迹为( )

直线
椭圆
双曲线
抛物线

这是我们的一次周考题,我们老师上课讲解的时候,一开始很尴尬差点没解出来,但最后还是凭着他强大的代数功底解出了答案(我的恩师曾荣获湖南省教师解题大赛一等奖),下面我们从之前的结论来看看这个问题。

fa6c2f20f729aac1f2cd286f764c2ad6.png

解:连接点

,且直线
交抛物线于点
,则点
为线段
中点.

那么:

.

则:

.

又因为:

于是:

.

故点

的轨迹方程是:
,答案是
.

下面来看看我们 @Dylaaan 大大的神押题的全国三卷。

135f56522b67d2292f8bfe444e3a4479.png

这个题大家第一问是不是能秒杀?

解:(1):直线

经过抛物线
的焦点
.

希望大家能了解并熟练以上的几个小结论,对写一些以阿基米德三角形为背景的选填压轴和大题会极为有用,其实这类例题挺多的,在此小小展示两个,大家可以去组卷网搜搜来练练手。

时间不多,小小更了篇文,望大家多多支持~

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值