作者简介: 杨秉翰(Douglas B.-H. Yang),现就读于美国菲利普斯安多福学院(Phillips Academy Andover)。出生长大于香港,父母来自台湾。从小热爱数学以及魔术,受 Magical Mathematics 一书启发,利用自动机理论发明了模式预测型吉尔布雷斯扑克牌魔术,并撰以下报告。此报告曾获得 2018 年丘成桐中学科学奖(数学)北美区银奖,作者去年应邀参加芝加哥科学魔术会议。本文英文题目为 Pattern Predictive Gilbreath Card Trick,中文版经作者授权刊登于《数理人文》杂志(订阅号:math_hmat),未经许可,不得转载。
1. 绪论
台上魔术师拿出两副牌背颜色不同的扑克牌,正面朝下摆在桌上。两副牌各自切成两半,然后两副牌各自拿起半副,由魔术师本人或是交给观众成员,用交错式洗牌法(riffle shuffle, 又称梅花间竹式洗牌法)洗牌,让原本的两副牌混在一起,成为两副洗过的新牌。魔术师拿起第一副牌,两张牌为一组,将扑克牌亮给观众看,但亮牌前先请观众猜猜看,接下来亮出的一组牌是什么颜色组合(黑红、黑黑,还是红红)观众或许可以猜对几个组合,但一定会有猜错的时候,因为 26 个组合全部猜对的机率是 (1/3)26;然而,魔术师却能成功预测每一组两张牌的颜色组合。接着,魔术师拿起第二副牌,提高预测的难度,还要预测每一组牌的花色强弱组合(方块与梅花弱、红心与黑桃强)。提高难度后,魔术师还是每一组牌都能正确预测。
这样的「模式预测型吉尔布雷斯扑克牌魔术」(Pattern Predictive Gilbreath Card Trick),是知名的吉尔布雷斯扑克牌魔术(Gilbreath card trick)的变化版,加入互动元素。表演吉尔布雷斯扑克牌魔术时,一副牌洗过之后,两张牌为一组,每一组都刚好有一张红色牌、一张黑色牌。本文将介绍本魔术的原理,并探究其中蕴含的数学。进入正题前,本文会先回顾吉尔布雷斯原本的魔术以及德布因发明的变化版,再介绍本文提出的模式预测变化版以及背后的数学。
2. 吉尔布雷斯扑克牌魔术与德布因变体
加拿大魔术师诺曼‧吉尔布雷斯(Norman Gilbreath)在 50 年前运用数学原理,发明一种高强的扑克牌魔术。魔术师先准备一副牌扑克牌,整副牌颜色一红一黑交错出现(当然,观众不会知道这样的事前准备工作),然后切成张数一样的两叠牌(或是任意从一副牌背朝上的一副扑克牌发出几张牌),两叠牌交错洗牌之后,整副牌两张为一组,每组牌都是一张红、一张黑 [1]。同样的原则,也可以用在扑克牌花色与数字:1985 年,尼可拉斯‧戈维特‧德布因(Nicolaas Govert de Bruijn)发明这种魔术的变化版,让两叠牌不只红黑交错,花色强弱也交错出现。一副牌切成两叠后,一叠是方块(弱)与黑桃(强)交错,另一叠是梅花(弱)与红心(强)交错,两叠交错洗牌(这样的事前准备,同样不会让观众知道)。同样的道理,洗完牌之后每组两张牌一定会是一红一黑、一强一弱,或两者都是。德布因利用一个巧妙的数学自动机,证明他的魔术原理。这个自动机模型,反映整个交错洗牌过程各阶段的状态 [2]。基本上,自动机任两次转换,从一个状态转换到另一个状态,都可以证明是一红一黑、一强一弱,或是两者都是。不管是原本的吉尔布雷斯魔术,或是德布因发明的变化版,都让魔术师可以证明,普遍认为是最公平的交错式洗牌法,其实并不会改变每组两张牌的牌面性质,因此可以变出惊人的魔术。
事实上一副扑克牌经过交错式洗牌后,许多性质并不会改变。每次交错洗牌后,扑克牌的排列顺序,都称作吉尔布雷斯排列(Gilbreath permutation)。例如,在前述的两种吉尔布雷斯扑克牌魔术中,假设我们手上拿着两副红黑交错的扑克牌,利用交错式洗牌,洗完牌后,若将整副牌按顺序两两分为一组,会发现每一组牌都是一红一黑。
在继续讨论之前,我们先向较不熟悉的读者介绍一下交错式洗牌的方法。首先将一副牌切成两叠,分别用左右手拿起,两叠牌横放,用双手从上方握住,拇指扣紧。两叠牌一角重叠,用拇指控制,将两叠牌交错放下。每张牌放下时,我们就说这张牌「落下」。每一张牌落下时,就不再是手中那叠牌的底牌,而是下一张牌变成底牌。整个洗牌过程,到手中所有牌全部落下才算完成。这里必须强调,在表演魔术时,牌落下的顺序,是魔术师预测顺序的相反。换句话说,洗牌时首先落下的牌,在表演时是到最后才会让魔术师预测、亮给观众。
如果想了解交错式洗牌对整副牌的影响,可以想像有一副红黑交错排列的牌,第一张是红色、最后一张是黑色(图中第 1 列,请看 column 1),假设发出三张牌,每一张发出的牌都叠在前一张牌的上方,如此面前就会有两叠牌,第一叠是剩下未发的牌(底牌为黑色,图中第 2 列,请看 column 2),第二叠是发出的牌(底牌为红色,图中第 3 列,请看 column 3),由于发牌的方式,这三张牌的顺序是发牌前的相反。若将这两叠牌洗牌,假设第一张放掉的牌是第二叠底部的红色牌(图中第 3