特征值与特征向量_如何理解特征值与特征向量

56323673887629a58ba5ec642aa9c8eb.gif

“特征值”与“特征向量”中的“特征”译自 “eigen”,意为“特征的”、“自身的”。因而,“特征值”与“特征向量”分别与“eigenvalue”与 “eigenvector”相对应。这两个名词以的形式出现在我们的课本,其中为方阵、 为的特征值、 为属于特征值的特征向量。

初学代数,可能很多同学,在面对这个等式时,都有或多或少的困惑:这个等号左边是矩阵和向量的乘积, 右边是数乘向量,两边怎么联系在一起的?虽然对于给定矩阵,求解特征值和特征向量没问题,但“特征值”和“特征向量“究竟是什么含义,为什么被冠以“特征”?可不可以给出直观一些的几何解释呢?

答疑时间到了

前几期推送内容,已经很好地解释了矩阵可以看作对空间的一种特定的线性变换。所以,当你看到这个等式时,也可以自然地把看作对空间的线性变换,这样就打开了对特征值和特征向量的理解之门。让我们一起来看看如何用线性变换的观点来理解特征值与特征向量吧!

假如二维空间中的一个线性变换对应的矩阵为 。我们考虑这一线性变换对空间中向量的作用,关注向量在变换之后是否仍在自身生成的空间(通过原点和向量尖端的直线)里。

2fc56134c3388696315736e0e644ef36.gif

从图中,我们能够发现,除了两条直线上的特殊向量变换后仍然在它们各自生成的空间(向量在变换之前所在的直线)之外,其余任一向量在变换后都发生了或多或少的旋转,从而离开自身生成的空间。

这两个变换后仍然不变的子空间(直线)的基向量是:

1、向量 。  生成的空间是轴,经过变换后仍然留在轴上,只是被拉伸为原来的2倍。同时, 轴上的其他任一向量变换后也都还在轴上,且均被拉伸为原来的2倍。

2、向量 。 生成的空间为对角线,经过变换后仍留在对角线上,只是被拉伸为原来的3倍。同时,这条对角线上的其他任一向量变换后还在这条线上,均被拉伸为原来的3倍。

因此,矩阵  对基向量与向量的作用仅仅是拉伸了它们的长度,并没有改变它们的方向。此例中,伸长的倍数(衡量向量在线性变换后被拉伸或者收缩比例的因子)2和3为矩阵  的特征值,而与向量(线性变换后仍在自身生成的空间里的向量)为分别属于特征值2和3的特征向量,并且所在的轴以及所在的对角线上所有非零向量均为分别属于特征值2和3的特征向量。

上例中的特征值均为正数,当矩阵的特征值有负数时,对应的变换又是什么样子的呢?比如 有两个特征值:-1和3,其中属于-1的特征向量为,属于3的特征向量为 。我们来看看它对空间作用的结果吧!

b56c99414abc06aeb762a99f1cde713e.gif

从图中容易看出,变换后,没有发生旋转的直线共两条:其中一条为向量所在的对角线,向量的长度没变,但是方向相反了;另外一条为向量 所在的对角线。

再来看看三维空间中的旋转变换:

56323673887629a58ba5ec642aa9c8eb.gif

93572110fbffc7213b404663fd8dcfed.png

它的特征向量就是旋转轴,因为只有旋转轴在旋转变换前后的位置保持不变。显然,把三维旋转看成绕某个轴(比如绕向量旋转),要比单纯考虑图中的矩阵要直观得多。这里,旋转变换的特征值一定为1,因为旋转变换并没有拉伸和收缩任何一个向量,所以向量的长度保持不变。从这个例子也可以看出特征向量的重要性。

由上述可知,对于矩阵描述的线性变换,可以通过将矩阵的列看作变换后的基向量来理解,而理解线性变换的作用,更好的方法是求出它的特征值和特征向量。因为只有特征向量是线性变换后仍在自身生成空间里的向量,换句话说,特征向量只存在于线性变换后没有发生旋转的直线上,而特征值是衡量特征向量在线性变换后拉伸或者收缩比例的因子

下面,再来介绍几种特殊情况:

01

二维线性变换不

一定有实特征向量

考虑逆时针旋转90度的变换 ,它就没有实特征向量。因为在这一变换的作用下,平面每一个向量都发生了旋转,离开了自身在平面生成的空间。当然,你不妨计算一下这个矩阵的特征值和特征向量,看看会发生什么。

489314f8e09dc73d8467747c1b7421df.gif

02

二维线性变换的所有特

量可能都在同一条直线上

来看一下下面的切变变换

ed0dbeb37eb94da0c4652b8f47b728c5.gif

容易看出,轴上的所有非零向量都是属于特征值1的特征向量。实际上,它们也是的所有特征向量。自己动动手吧!看看你计算的结果与这里得到的“ 轴上的所有非零向量是属于特征值1的全部特征向量”的结果是否一致。

03

二维线性变换的特征向

量可能存在于整个平面

比如,将所有向量都变成3倍的线性变换。

3fdfb5e3d574e9583dd1741c062689dd.gif

显然,3是线性变换唯一的特征值,而平面内的每一个非零向量都是属于特征值3的特征向量。

这期推送就到这儿吧!对“特征值”和“特征向量”,你是不是已经有了更多的认识?文章开头提出的问题都解决了吗?“特征值”与“特征向量”这两个词为什么和“eigenvalue”、“eigenvector”对应,你也知道答案了吧?

  • 14
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值