win10设置默认中英文符号

博主分享了自己在Windows环境下调整输入法设置,使中文输入法默认使用英文标点的过程。尝试了调整首选项顺序和修改微软拼音输入法常规设置无效后,最终发现在微软拼音输入法的外观设置中进行特定操作解决了问题,同时也修复了切换中英文符号的快捷键。这一解决方案可能对遇到同样困扰的用户有所帮助。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

很早之前我把我的输入法设置成无论中英文都使用英文标点符号,结果现在由于工作需要经常使用中文符号,可我忘记了当时是怎么设置的。再网上找了很多文章,相关做法对我来讲根本没用。所以把我的这种方式记下来以便有人遇到了相同的问题可以做参考。

1.很多人都说要调整首选项的顺序,可首选项是默认输入语言的也不是符号,况且我的首选项本来就是中文。所以没用再试
在这里插入图片描述
2.还有人说在微软拼音输入法下的常规里更改以下设置项,照理说应该是可行的。但我改了还是不行,所以我接着试
在这里插入图片描述
3.在微软拼音输入法的外观打开以下选项再试,居然好了。不光这个好了,连之前一直都没反应的切换中英文符号的快捷键(ctrl+.)也好了。
真是令人难以置信,谁能想到居然分类为外观的设置项里影响居然会这么大。
在这里插入图片描述

数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框与类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值