c语言识别条形码,在智能手机上实现二维条形码识别

摘要:

本文根据实际的项目内容,介绍了利用拍照手机实现对PDF417二维条形码识别的一套完整解决方案,针对手机的软硬件组成设计了适合的识别算法,并在一款Linux手机上获得了实物成果。 文中首先分析了国内外二维条形码应用的发展趋势,介绍了PDF417二维条形码的组成,对比了手机和专用条形码阅读器之间的性能差别,分析了手机应用处理器的运算性能以及嵌入式Linux平台的环境特点。由于手机的组成结构并不是针对图像识别的应用而设计的,其光学特性和运算性能远不及专用条形码识别设备,经典的条形码识别算法不完全适用于手机,利用手机作为图像识别平台会产生一些专用条形码阅读设备所不会遇到的特殊问题,文中对产生这些问题的原因进行了分析。 随后,根据对这些问题的分析结论,针对一款具体型号的Linux智能手机展开研究,提出了适合手机组成结构的PDF417二维条形码图像识别算法:在极为有限的手机处理器资源下,针对手机摄像模组普遍存在的光学退化特性提出了图像复原的方法;针对手机应用处理器的特性设计了计算量小、内存开销少的条形码图像识别算法。调和了"图像识别问题的大量计算量、大存储空间开销"和"手机嵌入式处理器数学运算性能低、内存空间有限"这一对矛盾。 最后,将识别算法移植到了一款Linux智能手机上。文中论述了编写识别程序代码过程中针对Linux/Qtopia平台的一些主要优化方法和技术细节,给出了实物测试结果。实测表明,根据本文的识别算法所编写的识别程序即使是在目前属于低端配置的智能手机上也能很好地运行,对中小规模的PDF417条形码图像的识别速度和准确度完全达到实用的水平。 和项目背景有关,本文的理论和实现工作都是针对东信ES2008手机的硬件架构和操作系统平台而展开的。由于ES2008的应用处理器采用的是常见的ARM内核,加之实现程序使用C语言作为源代码,因此图像识别的算法具有很强的可移植性,研究结果的适用范围广泛,具有一般性,易于移植应用到其它手机上。

展开

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值