matlab智能算法30个案例分析_幼儿园案例分析题30

幼儿园注意力建议
本文分析了幼儿在户外观察活动中的注意发展特点,指出无意注意占主导地位,并提出了相应的教育建议。

24f399d8-a222-eb11-8da9-e4434bdf6706.jpeg越是专注的时候,可能越有压力,但不必害怕它,因为有时候这种压力会让你更专注。

今天5月11日,幼儿园正式复学,加油!

幼儿园案例分析题30.陈老师带小班幼儿到户外观察幼儿园的果树,幼儿瞧瞧这棵,抱抱那棵,看看这棵树,摸摸那棵树。集中谈话时,许多小朋友虽说不出其中任何一棵果树的特征、形状等,但小朋友能说出:看到了天上有小鸟在飞,水池里有小金鱼在游来游去,果树上有蝴蝶在飞舞,操场上有小朋友在玩“老鹰抓小鸡”的游戏……陈老师很是困惑。

回答:(1)请分析材料中所反映的幼儿注意发展的特点。

(2)结合材料,提出合理的教育建议。

答案仅供参考:(1)幼儿注意发展的特点是无意注意占优势,有意注意初步形成,但处于较低水平。

①幼儿无意注意占优势。容易引起幼儿无意注意的因素主要有刺激物的物理特性,儿童容易被那些颜色鲜艳、声音动听、造型奇异、变化显著的刺激物吸引,所以幼儿容易看到天上飞的小鸟、水里游的金鱼等等。另外,那些符合幼儿自身的兴趣和需要的刺激物也更容易引起幼儿的无意注意。

②幼儿有意注意初步形成,处于较低水平。有意注意是有预定目的,需要幼儿意志努力的注意,这一时期幼儿有意注意的发展水平还比较低,因此在户外观察果树时,小朋友们说不出树的特征、形状等。

(2)言之有理即可。

1 基于遗传算法的TSP算法(王辉) TSP (旅行商问—Traveling Salesman Problem),是典型的NP完全问,即其最坏情况下的时间复杂性随着问规模的增大按指数方式增长,到目前为止不能找到一个多项式时间的有效算法。遗传算法是一种进化算法,其基本原理是仿效生物界中的“物竞天择、适者生存”的演化法则。遗传算法的做法是把问参数编码为染色体,再利用迭代的方式进行选择、交叉以 及变异等运算来交换种群中染色体的信息,最终生成符合优化目标的染色体。实践证明,遗传算法对于解决TSP问等组合优化问具有较好的寻优性能。 2 基于遗传算法和非线性规划的函数寻优算法(史峰) 遗传算法提供了求解非线性规划的通用框架,它不依赖于问的具体领域。遗传算法的优点是将问参数编码成染色体后进行优化, 而不针对参数本身, 从而不受函数约束条件的限制; 搜索过程从问解的一个集合开始, 而不是单个个体, 具有隐含并行搜索特性, 可大大减少陷入局部最小的可能性。而且优化计算时算法不依赖于梯度信息,且不要求目标函数连续及可导,使其适于求解传统搜索方法难以解决的大规模、非线性组合优化问。 3 基于遗传算法的BP神经网络优化算法(王辉) BP模型被广泛地应用于模式分类、模式识别等方面.但BP算法收敛速度慢,且很容易陷入局部极小点,而遗传算法具有并行搜索、效率高、不存在局部收敛问等优点而被广泛应用.遗传算法的寻优过程带有一定程度的随机性和盲从性,多数情况下只能收敛到全局次优解,且有过早收敛的现象.为了克服遗传算法寻优过程的盲从性,将有监督学习的BP算法与之结合以达到优势互补、提高算法的稳定性和全局搜索能力的目的。 4 设菲尔德大学的MATLAB遗传算法工具箱(王辉) Matlab 遗传算法(Genetic Algorithm)优化工具箱是基于基本操作及终止条件、二进制和十进制相互转换等操作的综合函数库。其实现步骤包括:通过输入及输出函数求出遗传算法主函数、初始种群的生成函数,采用选择、交叉、变异操作求得基本遗传操作函数。以函数仿真为例,对该函数优化和GA 改进,只需改写函数m 文件形式即可......
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值