维普资讯
2003年 12月 伊犁师范学院学报 Dec.2003
第 4期 JournalofILiTeachersCollege NO.4
奇数阶面幻方的行列式构造法
段智力,王冰洁,王丽颖
(白城 师范学院 数学系,吉林 白城 137000)
摘 要 :通过展开行列式的方式,证 明了奇数阶面幻方的存在性,并得 出奇数阶面幻方的
一 类统一的构造法。并通过实例进行 了验证 .
关键阗 :面幻方 ;行列式 ;构造法
中图分类号:O212 文献标识码 :A 文章编号 :1(1(19—1076(2003)04—0(189一(13
A kindofStructuringM ethodoftheDeterminantoftheOddRankSurfaceM agicSquare
DUANZhi.1iWANGBing-jie,WANGLi.ying
(DepartmentofMathematic,BaichengTeachersCollegea3aicheng 137000,.Jilin、China)
Abstract:Thispaperprovestheexistenceoftheoddrmlksurfacemagicsquarethroughspreadingoutthe
determinant andobtainsakindofstructuringmethodoftheoddrank surfacemagicsquarewhichis
validatedbyexamples.
1 引言 上述两个 引理显然成立 .
幻方 问题是组合数学研究的一个有趣 问题 .它 定理 1 把 自然数 l,2,…,n3依次按n个一
在 图论 、程序设计 、人工智能、实验设计及工艺美 组,分成n个组,每组数记为:
术等方面都得到了广泛的应用.但是,对于幻方中 aij=((i—1)n+(j一1)n+l,(i—1)n+(j一1)n+2,
…
的面幻方存在性 和构造法的研究尚无统一定论,只 . (i—1)n (j—1)n+n), 并igA=(a~i)n×n、其 中
有某些具体 的特例 .本文将利用展开行列式的模式 i=l,…,n.j=1,…,n.
方法,给出一个奇数阶面幻方的存在性定理及一类 把矩阵A按行列式展开,不考虑各项的符号 ,
统一构造法 ,并给出一些实例 . 得n项如下 :
2 问题的提 出及解决 Cl= (alI1,a2(I1一l1’…,afIl—1)2,aI1)
定义1 把1,2,3,…,n个 自然数 ,分别放 C2= (alfI1一1),a2fll一2),…a(11)l,aIu1)
人 由n个相 同的小正方体组成的立方体的n个中一D、
上 ,由此构成的立方体数阵,如果满足同在一个平 C=(al1,a2m …,afI1一1)3,an2)
面上的n个数的和都相等,就称这样 的立方体数