目录
引言
在 AI Agent 技术概述:开启智能时代的新篇章,对 AI Agent 进行了概括性介绍。今天将深入探讨 AI Agent 的技术原理,解析其背后的核心组件和工作机制。通过本文你将更清楚地了解 AI Agent 是如何"思考"和"行动"的。
AI Agent 的核心架构
一个完整的 AI Agent 系统通常由以下四个关键部分组成:
-
大语言模型(LLM)
-
规划模块
-
记忆模块
-
工具使用模块
让我们逐一深入了解这些组件的作用和原理。
1. 大语言模型(LLM):AI Agent 的"大脑"
大语言模型是 AI Agent 的核心,它为 Agent 提供了理解、推理和决策的能力。常见的 LLM 包括 GPT-4、Claude 等。LLM 在 AI Agent 中主要发挥两个作用:
-
理解用户输入和环境信息
-
生成执行计划和具体指令
为了更好地发挥 LLM 的能力,也引入了一些特殊的技术,如思维链(Chain of Thought)和思维树(Tree of Thoughts)。
-
思维链:让模型"一步步思考",将复杂任务分解为简单步骤。
-
思维树:在每个思考步骤中探索多种可能性,形成一个决策树结构。
这些技术显著提高了 AI Agent 的推理能力和问题解决效率。