6月11日,盛趣游戏数据分析专家黎湘艳老师开启了数数课堂·第六期直播,本期也是黎湘艳老师三期专题课程的最后一次直播分享。
黎湘艳老师向学员们分享了流失分析、渠道用户质量分析、活动效果分析3大板块的处理经验,并用6个实战案例详述如何将固定的数据分析框架灵活带入至各个项目中,让分析结果产生驱动业务的价值。
-----/以下为文字实录/-----
前两期课程我们谈到了:
1. 复盘我在数据分析岗的心得体验;
2. 讲述如何搭建数据分析体系,其中包括数据分析的六脉神剑,数据分析的关键指标、数据分析框架,数据分析方法等内容。
本次,我会主要讲解过往大家最关心三大板块:流失分析、渠道用户质量分析、活动效果分析,并会为数据分析师们提供一些岗位建议。
01
流失分析
流失分析数据是粗粒度衡量各测试节点质量的关键指标。
“因为我们知道,每款游戏都有用户流失的情况,只是多少的区别,然而一般情况下我们只能看到结果,但是如果能定位到原因,就会有办法调整。” ▍ 如何定义流失用户 在介绍流失方法和具体案例之前,我们先了解 如何合理地定义流失用户? 大家刚开始做流失分析时最大的困惑,就是选择多大的时间跨度才能准确定义玩家为一个流失用户。 假如流失玩家的流失期限定义太短可能会造成 资源浪费,比如:当定义3天未产生登录事件为流失,有可能这一部分用户在3天以后的回归率很高,这就导致召回活动会覆盖许多非流失玩家,大量的召回奖励不仅浪费资源,也破坏了游戏平衡性; 而假如流失玩家的流失期限定义太长,比如60天未登录游戏即流失,这样覆盖全部真实流失玩家的比例较低,召回活动显得 没有太大的意义。 其实不管有没有做召回活动,如果流失用户定义不准确的话,我们分析出来的流失用户特征便存在误差。 为了规避上述情况,我们采用了 流失用户回归率及 拐点理论,来制定流失用户定义标准。 当X轴上数值的增加会带来Y轴数值大幅增加或者减少,直到超过某个点之后,当X增加时Y的数据增加或减少大幅下降,也就是经济学里面的边际收益的大幅减少, 我们就这个这个点认为是“拐点”。 下图是以3天为单位的流失用户回归率曲线,(也就是用户某日登陆游戏,在此之后三天内没有继续登陆游戏,我们就认为它已流失),当流失期限超过15天的时候,曲线逐渐平滑,我们可以认为当一个玩家连续15天没有登陆游戏,可以判断它已经流失。

