题意
给你n个区间,每个区间可以选的数的范围是[ai,bi]要你求非空上升子序列的个数
n<=500,ai,bi<=10^9
分析
这道题好题啊,但是我好弱啊
先说部份分,对于每个数我们可以拆成两维,(pos,num),然后就可以dp来做,每一次只把pos和num比较小的累计起来,然后简单的二维dp
考虑下正解,肯定是把很多区间给离散化一下,但是这里又害怕取到相同的数,我们可以先把bi+1,然后对于每个区间,就是取 [li,ri) [ l i , r i )
然后现在看怎么dp, f[i][j] f [ i ] [ j ] 表示第i个数必须放,放的高度在j区间里面,枚举上一个放的区间
f[i][j]=∑k=0i(∑p=0jf[k][p])calc(k+1,i,j)
f
[
i
]
[
j
]
=
∑
k
=
0
i
(
∑
p
=
0
j
f
[
k
]
[
p
]
)
c
a
l
c
(
k
+
1
,
i
,
j
)
这里的 calc(k+1,i,j) c a l c ( k + 1 , i , j ) 表示 [k+1,i) [ k + 1 , i ) 的数不放,或者范围在第j个区间中,假设 [k+1,i) [ k + 1 , i ) 能放的有 m m 个,当前j这个区间的长度为l
这里好像有范德蒙德卷积公式:
calc(k+1,i,j)=(m+lm+1)
c
a
l
c
(
k
+
1
,
i
,
j
)
=
(
m
+
l
m
+
1
)
f[i][j]=∑k=0i(∑p=0jf[k][p])(m+lm+1)
f
[
i
]
[
j
]
=
∑
k
=
0
i
(
∑
p
=
0
j
f
[
k
]
[
p
]
)
(
m
+
l
m
+
1
)
发现这里括号内可以维护个前缀和,就没了
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N = 1010;
const ll Mod = 1e9+7;
inline ll read()
{
char ch=getchar(); ll p=0; ll f=1;
while(ch<'0' || ch>'9'){if(ch=='-') f=-1; ch=getchar();}
while(ch>='0' && ch<='9'){p=p*10+ch-'0'; ch=getchar();}
return p*f;
}
ll n,a[N],b[N],h[N],c[N];
ll f[N][N],inv[N];
void upd(ll &x,ll y){x = (x+y) % Mod;}
int main()
{
n = read();
inv[0] = inv[1] = 1; for(ll i=2;i<=n+1;i++) inv[i] = (Mod - Mod / i) * inv[Mod % i] % Mod;
for(ll i=1;i<=n;i++) a[i] = read() , b[i] = read() , b[i] ++ , h[i*2-1] = a[i],h[i*2] = b[i];
sort(h+1,h+2*n+1);
ll len = unique(h+1,h+2*n+1) - (h+1);
for(ll i=1;i<=n;i++)
{
a[i] = lower_bound(h+1,h+len+1,a[i]) - h;
b[i] = lower_bound(h+1,h+len+1,b[i]) - h - 1;
// printf("%lld %lld\n",a[i],b[i]);
}
len --; for(ll i=1;i<=len;i++) c[i] = h[i+1] - h[i] ;
for(ll i=0;i<=len;i++) f[0][i] = 1;
for(ll i=1;i<=n;i++)
{
for(ll j=a[i];j<=b[i];j++)
{
ll m = 0; ll sum = c[j];
for(ll k=i-1;k>=0;k--)
{
upd(f[i][j],f[k][j-1] * sum % Mod);
if(a[k] <= j && j <= b[k])
{
m++;
sum = sum * ((c[j] + m) % Mod) % Mod * inv[m+1] % Mod;
}
}
}
for(ll j=1;j<=len;j++) upd(f[i][j] , f[i][j-1]);
}
ll ans = 0;
for(ll i=1;i<=n;i++)
{
// printf("%lld\n",f[i][len]);
upd(ans , f[i][len]);
}
return printf("%lld\n",ans),0;
}