
Python数据可视化项目案例
文章平均质量分 95
查看任意博客【文末卡片联系博主】 本专栏以大学生实战为主,带你跨越毕业最后一步,所有源码都包含代码、数据库文件,论文和PPT模板、讲解视频以及部署文档教程等资料、轻松快速看懂代码。
专注于大学生项目实战开发,讲解,毕业答疑辅导,高校老师/讲师/同行合作。以及产品测评宣传、工具推广等合作
java李杨勇
CSDN毕设辅导道祖第一人、全网粉丝50W+,专注于大学生项目实战开发,讲解,毕业答疑辅导,高校老师/讲师/同行合作。以及产品测评宣传、工具推广等合作。同时招收学生代理、校园代理。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于大数据爬虫+AI大模型+Hadoop的旅游民宿分析平台(精品源码+精品论文+数据集+答辩PPT)
随着消费者对个性化、深度化旅游体验需求的增加,以及乡村旅游的持续升温,民宿行业迎来了显著增长,市场规模不断扩大。同时,政府对民宿行业的支持力度加强,出台了一系列鼓励政策。在此背景下,民宿预订平台迅速崛起,为民宿经营者提供了广泛的客源,也为消费者提供了便捷的预订服务。然而,民宿市场也面临着竞争加剧、经营成本上升等挑战,因此,民宿旅游消费分析平台应运而生,旨在通过数据分析为民宿经营者和消费者提供决策支持。原创 2025-09-20 12:05:43 · 777 阅读 · 1 评论 -
基于大数据+人工智能AI大模型+Python大数据爬虫+的民宿旅游消费分析平台(精品源码+精品论文+数据集+答辩PPT)
随着消费者对个性化、深度化旅游体验需求的增加,以及乡村旅游的持续升温,民宿行业迎来了显著增长,市场规模不断扩大。同时,政府对民宿行业的支持力度加强,出台了一系列鼓励政策。在此背景下,民宿预订平台迅速崛起,为民宿经营者提供了广泛的客源,也为消费者提供了便捷的预订服务。然而,民宿市场也面临着竞争加剧、经营成本上升等挑战,因此,民宿旅游消费分析平台应运而生,旨在通过数据分析为民宿经营者和消费者提供决策支持。原创 2025-09-20 12:04:28 · 628 阅读 · 0 评论 -
基于人工智能AI大模型+Python大数据爬虫+的民宿旅游消费分析平台(精品源码+精品论文+数据集+答辩PPT)
随着消费者对个性化、深度化旅游体验需求的增加,以及乡村旅游的持续升温,民宿行业迎来了显著增长,市场规模不断扩大。同时,政府对民宿行业的支持力度加强,出台了一系列鼓励政策。在此背景下,民宿预订平台迅速崛起,为民宿经营者提供了广泛的客源,也为消费者提供了便捷的预订服务。然而,民宿市场也面临着竞争加剧、经营成本上升等挑战,因此,民宿旅游消费分析平台应运而生,旨在通过数据分析为民宿经营者和消费者提供决策支持。原创 2025-09-20 12:03:24 · 940 阅读 · 0 评论 -
基于人工智能AI大模型+Python大数据爬虫+的笔记本电脑价格数据分析与可视化系统(精品源码+精品论文+数据集+答辩PPT)
随着笔记本电脑市场的快速发展,消费者面临品牌繁多、价格波动频繁、参数复杂等问题,难以做出科学合理的购机决策。同时,市场上缺乏专门针对笔记本电脑价格数据分析与可视化的综合性平台,用户获取信息的方式较为零散,缺乏有效的数据支持。本系统旨在构建一个集笔记本电脑价格数据分析、可视化展示、用户交互及智能推荐于一体的平台。通过数据采集、处理与可视化技术,系统实时分析笔记本电脑市场价格趋势,为用户提供直观的参考信息。原创 2025-09-17 08:57:19 · 1214 阅读 · 6 评论 -
基于大数据爬虫+Hadoop+笔记本电脑价格数据分析与可视化系统(精品源码+精品论文+数据集+答辩PPT)
随着笔记本电脑市场的快速发展,消费者面临品牌繁多、价格波动频繁、参数复杂等问题,难以做出科学合理的购机决策。同时,市场上缺乏专门针对笔记本电脑价格数据分析与可视化的综合性平台,用户获取信息的方式较为零散,缺乏有效的数据支持。本系统旨在构建一个集笔记本电脑价格数据分析、可视化展示、用户交互及智能推荐于一体的平台。通过数据采集、处理与可视化技术,系统实时分析笔记本电脑市场价格趋势,为用户提供直观的参考信息。原创 2025-09-17 08:54:49 · 668 阅读 · 0 评论 -
基于大数据爬虫+人工智能AI大模型的笔记本电脑价格数据分析与可视化系统(精品源码+精品论文+数据集+答辩PPT)
随着笔记本电脑市场的快速发展,消费者面临品牌繁多、价格波动频繁、参数复杂等问题,难以做出科学合理的购机决策。同时,市场上缺乏专门针对笔记本电脑价格数据分析与可视化的综合性平台,用户获取信息的方式较为零散,缺乏有效的数据支持。本系统旨在构建一个集笔记本电脑价格数据分析、可视化展示、用户交互及智能推荐于一体的平台。通过数据采集、处理与可视化技术,系统实时分析笔记本电脑市场价格趋势,为用户提供直观的参考信息。原创 2025-09-17 08:54:44 · 1293 阅读 · 0 评论 -
基于Python+大数据爬虫+Hadoop+电脑价格数据分析与可视化系统(精品源码+精品论文+数据集+答辩PPT)
随着笔记本电脑市场的快速发展,消费者面临品牌繁多、价格波动频繁、参数复杂等问题,难以做出科学合理的购机决策。同时,市场上缺乏专门针对笔记本电脑价格数据分析与可视化的综合性平台,用户获取信息的方式较为零散,缺乏有效的数据支持。本系统旨在构建一个集笔记本电脑价格数据分析、可视化展示、用户交互及智能推荐于一体的平台。通过数据采集、处理与可视化技术,系统实时分析笔记本电脑市场价格趋势,为用户提供直观的参考信息。原创 2025-09-17 08:53:52 · 736 阅读 · 0 评论 -
基于大数据深度学习的智能交通管理系统优化(精品源码+精品论文+数据集+答辩PPT)
本文介绍了一款基于深度学习技术的智能交通管理系统,采用B/S架构,集成Python、TensorFlow、Vue.js等技术实现。系统包含用户端和管理端:用户端提供车辆管理、驾驶证业务等在线服务;管理端支持数据分析和预测监控。通过LSTM网络对交通流量、天气等数据进行建模预测,实现30分钟内的交通趋势分析。系统采用分层架构设计,前后端分离,具有实时可视化展示功能,能有效提升交通管理效率和决策科学性。项目展现了深度学习在智能交通领域的应用价值,为城市交通管理提供了智能化解决方案。原创 2025-09-16 11:38:32 · 728 阅读 · 0 评论 -
基于大数据Hadoop+机器学习的城市交通管理系统(精品源码+精品论文+数据集+答辩PPT)
在面对城市道路管控和治理任务日益复杂及智能化水平不断提升的现状,传统的道路交通管理方式已无法满足高效率及智能化任务处理工作需求,本研究提出基于深度学习的智能交通管理系统的建设方案与实现。系统采用B/S架构,以深度学习方式对交通信息智能化分析和预判,实现交通管理工作中决策科学化和工作流程自动化。该系统包含用户端和管理人员端两个身份。用户端服务包括车辆信息管理、驾驶证申领和补发、驾驶证信息更改、机动车业务管理、工作进展查询、个人信息管理等,实现交通业务在线一站式办理。原创 2025-09-16 11:38:03 · 794 阅读 · 0 评论 -
基于大数据深度学习的智能交通管理系统优化(精品源码+精品论文+数据集+答辩PPT)
在面对城市道路管控和治理任务日益复杂及智能化水平不断提升的现状,传统的道路交通管理方式已无法满足高效率及智能化任务处理工作需求,本研究提出基于深度学习的智能交通管理系统的建设方案与实现。系统采用B/S架构,以深度学习方式对交通信息智能化分析和预判,实现交通管理工作中决策科学化和工作流程自动化。该系统包含用户端和管理人员端两个身份。用户端服务包括车辆信息管理、驾驶证申领和补发、驾驶证信息更改、机动车业务管理、工作进展查询、个人信息管理等,实现交通业务在线一站式办理。原创 2025-09-16 11:37:08 · 803 阅读 · 0 评论 -
基于大数据爬虫+协同过滤电影推荐平台设计与实现(精品源码+精品论文+数据集+答辩PPT)
随着信息技术的不断发展和互联网的普及,电影推荐系统已成为各大在线视频平台和电影院线不可或缺的一部分。然而,传统的电影推荐算法往往仅基于电影的内容或用户的历史观影记录进行推荐,忽略了电影票房这一重要因素对用户观影选择的影响。因此,本研究旨在开发一款基于用户行为与电影票房混合权重的协同过滤电影推荐平台,以更准确地捕捉用户的观影偏好,提高推荐的准确性和用户满意度。平台采用Java和Spring Boot框架开发后端,Vue框架实现前后端分离,MySQL作为数据库。原创 2025-09-14 08:09:05 · 855 阅读 · 0 评论 -
基于用户行为与电影票房混合权重的协同过滤电影推荐平台设计与实现(精品源码+精品论文+数据集+答辩PPT)
随着信息技术的不断发展和互联网的普及,电影推荐系统已成为各大在线视频平台和电影院线不可或缺的一部分。然而,传统的电影推荐算法往往仅基于电影的内容或用户的历史观影记录进行推荐,忽略了电影票房这一重要因素对用户观影选择的影响。因此,本研究旨在开发一款基于用户行为与电影票房混合权重的协同过滤电影推荐平台,以更准确地捕捉用户的观影偏好,提高推荐的准确性和用户满意度。平台采用Java和Spring Boot框架开发后端,Vue框架实现前后端分离,MySQL作为数据库。原创 2025-09-14 08:07:53 · 836 阅读 · 0 评论 -
2026计算机毕设选题參考-基于SpringBoot的个人博客系统的设计与实现-功能设计参考
管理员(后台)1.登陆2.用户管理:管理用户账号,对于违规用户进行封禁3.博文管理:管理发布的博文信息。审核用户发布的博文,可以管理博文评论,对评论进行增删改查等。支持上传视频和附件4.博文分类5.留言反馈:处理用户的留言反馈6.敏感词过滤7.md5加密密码8.系统管理:公告、轮播图、系统日志等9.社区论坛:论坛10.数据可视化:在系统首页用echarts图统计博文数据。最好有词云图用户(前台)1.登陆注册:支持找回密码,用密保问题找回就行。然后登陆加个验证码功能。原创 2025-09-07 09:05:37 · 819 阅读 · 0 评论 -
2026计算机毕设选题參考-基于SpringBoot的高校学生实习管理系统的设计与实现-功能设计参考
登录与注册:该系统支持管理员、学生、实习指导老师、企业注册与登录,登陆成功后可以修改密码和编辑的个人信息。公告管理:学生登录系统后可以收到公告提醒信息,提醒信息包括企业发布的周报提醒信息,指导老师发布的日志提交信息,以及管理员发布的日常公告信息。实习岗位管理:学生登录系统后可以查看该实习所属的实习指导老师分配到实习岗位的相关信息,学生可以选择其中一个岗位进行接受实习,一旦接受一个具体的实习岗位,就默认这个学生拒绝其他岗位,然后该学生只能看到接受的实习岗位的相关信息。原创 2025-09-07 09:05:04 · 938 阅读 · 0 评论 -
2026计算机毕设选题參考-高校实习生招聘系统-功能设计参考
本系统设计管理员、企业和实习生三种用户角色,并分别进行需求分析及功能模块设计和实现。1.实习生功能模块(1)个人信息管理:编辑和管理个人信息和简历信息。(2)职位搜索:根据行业、职位类别、地点等条件搜索实习职位。(3)申请管理:申请感兴趣的实习职位,跟踪申请状态。(4)面试管理:查看和管理面试邀请,确认面试时间和地点。(5)实习协议:签署、查看和管理实习协议。(6)实习日志:记录实习期间每日工作内容和学习收获。(7)评价与反馈:对实习经历进行评价,提供反馈给企业和学校。原创 2025-09-07 09:04:29 · 764 阅读 · 0 评论 -
2026计算机毕设选题參考-汽车交易平台-功能设计参考
登录注册模块:实现用户注册和登录功能,包括表单验证、密码验证等。首页模块:设计和实现首页展示,包括系统轮播图、推荐商品、促销活动等。汽车信息模块:展示汽车的详细信息,包括图片、价格、评论、销售商家等。订单管理模块:管理购买的汽车订单信息,可以查看订单状态,对订单进行确认收货、申请退款、评价等功能。优惠券管理模块:可以在对应的汽车信息页面领取优惠券,可以管理已经领取的优惠券列表,查看优惠券满减金额、过期时间等。抽奖模块:用户可以在系统参与转盘抽奖活动,可以抽取对应的奖品。原创 2025-09-07 09:03:56 · 827 阅读 · 0 评论 -
基于大数据爬虫的海南旅游个性化推荐系统的设计与实现设计和实现(精品源码+精品论文+数据集+答辩PPT)
随着互联网技术的发展和人们旅游需求的多样化,传统旅游信息获取方式已无法满足用户个性化和高效化的需求。本文建立海南旅游的个性化推荐系统的实例,系统采用B/S架构,前端采用Vue框架,后端采用Java以及SpringBoot技术主要框架在Java平台上实现,数据存储采用MySQL。同时该系统实现了针对管理者和一般游客的不同需求,其中的管理工作包括用户管理、海南旅游景点管理、景点分类管理、旅游路线管理、饮食信息管理、购物折扣查询以及系统设置,以便更好地集中管理与信息更新;原创 2025-09-07 09:00:50 · 633 阅读 · 0 评论 -
基于大数据爬虫+协同过滤+hadoop等实现的海南旅游个性化推荐系统的设计与实现设计和实现(精品源码+精品论文+数据集+答辩PPT)
随着互联网技术的发展和人们旅游需求的多样化,传统旅游信息获取方式已无法满足用户个性化和高效化的需求。本文建立海南旅游的个性化推荐系统的实例,系统采用B/S架构,前端采用Vue框架,后端采用Java以及SpringBoot技术主要框架在Java平台上实现,数据存储采用MySQL。同时该系统实现了针对管理者和一般游客的不同需求,其中的管理工作包括用户管理、海南旅游景点管理、景点分类管理、旅游路线管理、饮食信息管理、购物折扣查询以及系统设置,以便更好地集中管理与信息更新;原创 2025-09-07 09:00:46 · 698 阅读 · 0 评论 -
基于hadoop+大数据爬虫可视化的海南旅游个性化推荐系统的设计与实现设计和实现(精品源码+精品论文+数据集+答辩PPT)
随着互联网技术的发展和人们旅游需求的多样化,传统旅游信息获取方式已无法满足用户个性化和高效化的需求。本文建立海南旅游的个性化推荐系统的实例,系统采用B/S架构,前端采用Vue框架,后端采用Java以及SpringBoot技术主要框架在Java平台上实现,数据存储采用MySQL。同时该系统实现了针对管理者和一般游客的不同需求,其中的管理工作包括用户管理、海南旅游景点管理、景点分类管理、旅游路线管理、饮食信息管理、购物折扣查询以及系统设置,以便更好地集中管理与信息更新;原创 2025-09-07 08:59:50 · 771 阅读 · 0 评论 -
基于springboot+大数据爬虫的海南旅游个性化推荐系统的设计与实现设计和实现(精品源码+精品论文+数据集+答辩PPT)
随着互联网技术的发展和人们旅游需求的多样化,传统旅游信息获取方式已无法满足用户个性化和高效化的需求。本文建立海南旅游的个性化推荐系统的实例,系统采用B/S架构,前端采用Vue框架,后端采用Java以及SpringBoot技术主要框架在Java平台上实现,数据存储采用MySQL。同时该系统实现了针对管理者和一般游客的不同需求,其中的管理工作包括用户管理、海南旅游景点管理、景点分类管理、旅游路线管理、饮食信息管理、购物折扣查询以及系统设置,以便更好地集中管理与信息更新;原创 2025-09-07 08:58:43 · 869 阅读 · 0 评论 -
基于大数据爬虫+hadoop+Echarts的淘宝电商销售数据分析平台设计和实现(精品源码+精品论文+数据集+答辩PPT)
茶叶作为传统多样化饮品的重要原料,消费市场持续增长,然而由于品类繁多和用户口味各异,传统推荐方式难以满足个性化需求。为此,本文构建了一个基于大数据和推荐算法的茶叶电商销售数据分析平台。平台融合用户行为、茶叶特性和评价数据,采用协同过滤算法实现个性化推荐。系统设计包括用户模块、推荐模块、数据处理模块和前端展示模块,采用Hadoop、Spark处理大数据,结合MySQL、Vue.js、Echarts和Spring Boot提升交互体验与业务能力。原创 2025-09-05 10:32:58 · 818 阅读 · 1 评论 -
基于大数据爬虫+hadoop+Echarts的茶叶电商销售数据分析平台设计和实现(精品源码+精品论文+数据集+答辩PPT)
茶叶作为传统多样化饮品的重要原料,消费市场持续增长,然而由于品类繁多和用户口味各异,传统推荐方式难以满足个性化需求。为此,本文构建了一个基于大数据和推荐算法的茶叶电商销售数据分析平台。平台融合用户行为、茶叶特性和评价数据,采用协同过滤算法实现个性化推荐。系统设计包括用户模块、推荐模块、数据处理模块和前端展示模块,采用Hadoop、Spark处理大数据,结合MySQL、Vue.js、Echarts和Spring Boot提升交互体验与业务能力。原创 2025-09-05 10:31:59 · 1378 阅读 · 0 评论 -
基于springboot+大数据hadoop的网络舆情管理与可视化平台设计与实现(精品源码+精品论文+数据集+答辩PPT)
随着互联网高速发展网络舆论在社会发展舆论导向及公共安全管理的作用正逐步凸显出来。但现有的舆情处理模式已经不能应对大量的实时数据的海量需求和多样处理需求。为了实现舆情实时、高效收集、分析和反应的舆情管理目标设计了一个基于大数据的网络舆论管理及可视化系统。此系统通过获取社交媒体、新闻网站、论坛等地实时的信息经自然语言、情感分析、舆情热度分析等研究后得到大众的情绪情感然后再给出相应的应对策略。原创 2025-09-03 08:27:10 · 844 阅读 · 0 评论 -
基于hadoop大数据可视化的网络舆情管理与可视化平台设计与实现(精品源码+精品论文+数据集+答辩PPT)
随着互联网高速发展网络舆论在社会发展舆论导向及公共安全管理的作用正逐步凸显出来。但现有的舆情处理模式已经不能应对大量的实时数据的海量需求和多样处理需求。为了实现舆情实时、高效收集、分析和反应的舆情管理目标设计了一个基于大数据的网络舆论管理及可视化系统。此系统通过获取社交媒体、新闻网站、论坛等地实时的信息经自然语言、情感分析、舆情热度分析等研究后得到大众的情绪情感然后再给出相应的应对策略。原创 2025-09-03 08:26:11 · 576 阅读 · 0 评论 -
基于大数据的网络舆情管理与可视化平台设计与实现(精品源码+精品论文+数据集+答辩PPT)
随着互联网高速发展网络舆论在社会发展舆论导向及公共安全管理的作用正逐步凸显出来。但现有的舆情处理模式已经不能应对大量的实时数据的海量需求和多样处理需求。为了实现舆情实时、高效收集、分析和反应的舆情管理目标设计了一个基于大数据的网络舆论管理及可视化系统。此系统通过获取社交媒体、新闻网站、论坛等地实时的信息经自然语言、情感分析、舆情热度分析等研究后得到大众的情绪情感然后再给出相应的应对策略。原创 2025-09-03 08:24:43 · 718 阅读 · 0 评论 -
基于大数据的网络舆情管理与可视化平台设计与实现(精品源码+精品论文+数据集+答辩PPT)
随着互联网高速发展网络舆论在社会发展舆论导向及公共安全管理的作用正逐步凸显出来。但现有的舆情处理模式已经不能应对大量的实时数据的海量需求和多样处理需求。为了实现舆情实时、高效收集、分析和反应的舆情管理目标设计了一个基于大数据的网络舆论管理及可视化系统。此系统通过获取社交媒体、新闻网站、论坛等地实时的信息经自然语言、情感分析、舆情热度分析等研究后得到大众的情绪情感然后再给出相应的应对策略。原创 2025-09-03 08:23:38 · 1781 阅读 · 16 评论 -
2026计算机毕设选题參考-19.电子产品销售管理系统-功能设计参考
用户模块用户登录与注册:提供便捷的用户身份验证与注册功能。客户资料查询:可快速查看并客户资料信息详情。产品数据录入:方便用户录入销售产品信息。销售订单录入:方便销售人员录入销售订单信息。库存信息检索:帮助销售人员检索、展示客户所需的库存商品信息。订单消息通知:及时推送未处理的销售订单信息,方便管理人员及时审核和处理。管理员模块首页统计:echarts图4个以上用户信息管理:负责对用户账号信息进行全面管理维护。客户信息管理:储存客户的基本信息,完成客户信用管理。原创 2025-09-03 08:10:02 · 781 阅读 · 0 评论 -
2026毕设选题-大数据/机器学习类选题参考-基于Hive的二手房屋信息的数据分析及可视化-功能设计
(1) 用户管理模块实现用户注册、登录功能,支持用户信息管理,确保用户身份的唯一性与数据安全。通过记录用户的浏览和购房历史行为,为后续的个性化推荐和决策支持提供数据支持。(2) 数据采集与房源分类模块通过爬虫或公开的数据集获取房源信息,包括房价、楼盘信息、地理位置、用户评价等。利用数据清洗和分类算法对房源进行分级与分类展示,帮助用户快速浏览和筛选符合需求的房屋。(3) 智能推荐模块。原创 2025-09-01 17:21:09 · 954 阅读 · 0 评论 -
2026毕设选题-大数据/机器学习类选题参考-基于Hive的电影数据分析系统-功能设计
本研究的主要内容包括电影数据的爬虫采集、数据处理与分析、系统开发及数据可视化等几个方面,此外,还将引入Hive技术用于处理大规模数据。通过爬虫技术从各大电影平台抓取电影数据,包括电影标题、内容、发布时间、作者信息等,确保数据的完整性与时效性。然后,对采集到的数据进行清洗、去重、格式化等处理,以保证数据质量。为了处理大规模数据,研究将利用Hive生态系统中的HDFS来存储大量电影数据,并通过MapReduce技术对数据进行并行处理和分析。原创 2025-09-01 17:18:46 · 591 阅读 · 0 评论 -
2026毕设选题-大数据/机器学习类选题参考-基于大数据Hive的电影数据分析系统可视化平台-功能设计
本研究的主要内容包括电影数据的爬虫采集、数据处理与分析、系统开发及数据可视化等几个方面,此外,还将引入Hive技术用于处理大规模数据。通过爬虫技术从各大电影平台抓取电影数据,包括电影标题、内容、发布时间、作者信息等,确保数据的完整性与时效性。然后,对采集到的数据进行清洗、去重、格式化等处理,以保证数据质量。为了处理大规模数据,研究将利用Hive生态系统中的HDFS来存储大量电影数据,并通过MapReduce技术对数据进行并行处理和分析。原创 2025-09-01 17:18:33 · 685 阅读 · 0 评论 -
2026毕设选题-大数据/机器学习类选题参考-基于Hadoop的招聘岗位信息推荐系统-功能设计
用户管理、招聘岗位分类、招聘岗位数据、薪资预测管理、招聘岗位资讯、智能AI推荐等、系统日志系统分为两大核心部分,用户操作部分,用户功能包括注册登录,等功能。管理员后台操作部分,管理员功能包括个人中心,用户管理,招聘信息管理,岗位资讯管理,岗位分类管理,薪资预测管理,通知公告管理,系统日志管理,菜单列表管理,智能AI管理,公告分类管理等功能。系统结构功能图如图4-3所示。原创 2025-08-30 11:09:44 · 727 阅读 · 0 评论 -
2026毕设选题-大数据/机器学习类选题参考-基于大数据人工智能+Hadoop的招聘岗位信息推荐系统-功能设计
用户管理、招聘岗位分类、招聘岗位数据、薪资预测管理、招聘岗位资讯、智能AI推荐等、系统日志管理员后台操作部分,管理员功能包括个人中心,用户管理,招聘信息管理,岗位资讯管理,岗位分类管理,薪资预测管理,通知公告管理,系统日志管理,菜单列表管理,智能AI管理,公告分类管理等功能。系统结构功能图如图4-3所示。原创 2025-08-30 11:09:41 · 700 阅读 · 0 评论 -
2026毕设选题-大数据/机器学习类选题参考-基于Hadoop的一线城市租房需求的数据分析平台-功能设计
智能AI推荐房源、添加、论坛交流、租房资讯、系统日志、租房推荐、预约租房看房、用户/房屋信息/租房信息管理等核心功能。原创 2025-08-30 08:29:49 · 614 阅读 · 0 评论 -
2026毕设选题-大数据/机器学习类选题参考-基于大数据+智能ai大模型+Hadoop的一线城市租房需求的数据分析平台-功能设计
智能AI推荐房源、添加、论坛交流、租房资讯、系统日志、租房推荐、预约租房看房、用户/房屋信息/租房信息管理等核心功能。原创 2025-08-30 08:29:46 · 950 阅读 · 0 评论 -
2026毕设选题-大数据/机器学习类选题参考-基于大数据可视化的网约车运营数据可视化分析系统-功能设计
(1)数据采集与存储 :采集网约车运营数据(含订单时间、轨迹坐标、用户评分等字段),使用Sqoop工具将数据导入Hadoop集群(HDFS)。搭建Hadoop生态系统(HDFS、MapReduce、YARN、Hive),确保数据存储与管理的可靠性。(2)数据处理与分析:基于MapReduce编写数据清洗程序,去除噪声数据和异常值,完成数据标准化。利用Hive构建数据仓库,执行SQL查询与聚合分析,提取用户行为模式、热门区域分布等关键指标。原创 2025-08-30 08:25:47 · 909 阅读 · 0 评论 -
2026毕设选题-大数据/机器学习类选题参考-基于大数据Hadoop的网约车运营数据可视化分析系统-功能设计
(1)数据采集与存储 :采集网约车运营数据(含订单时间、轨迹坐标、用户评分等字段),使用Sqoop工具将数据导入Hadoop集群(HDFS)。搭建Hadoop生态系统(HDFS、MapReduce、YARN、Hive),确保数据存储与管理的可靠性。(2)数据处理与分析:基于MapReduce编写数据清洗程序,去除噪声数据和异常值,完成数据标准化。利用Hive构建数据仓库,执行SQL查询与聚合分析,提取用户行为模式、热门区域分布等关键指标。原创 2025-08-30 08:25:09 · 566 阅读 · 0 评论 -
2026毕设选题-大数据/机器学习类选题参考-基于大数据Hadoop的网约车运营数据可视化分析系统-功能设计
(1)数据采集与存储 :采集网约车运营数据(含订单时间、轨迹坐标、用户评分等字段),使用Sqoop工具将数据导入Hadoop集群(HDFS)。搭建Hadoop生态系统(HDFS、MapReduce、YARN、Hive),确保数据存储与管理的可靠性。(2)数据处理与分析:基于MapReduce编写数据清洗程序,去除噪声数据和异常值,完成数据标准化。利用Hive构建数据仓库,执行SQL查询与聚合分析,提取用户行为模式、热门区域分布等关键指标。原创 2025-08-30 08:24:31 · 634 阅读 · 0 评论 -
2026毕设选题-大数据/机器学习类选题参考-基于Hadoop的网约车运营数据可视化分析系统-功能设计
(1)数据采集与存储 :采集网约车运营数据(含订单时间、轨迹坐标、用户评分等字段),使用Sqoop工具将数据导入Hadoop集群(HDFS)。搭建Hadoop生态系统(HDFS、MapReduce、YARN、Hive),确保数据存储与管理的可靠性。(2)数据处理与分析:基于MapReduce编写数据清洗程序,去除噪声数据和异常值,完成数据标准化。利用Hive构建数据仓库,执行SQL查询与聚合分析,提取用户行为模式、热门区域分布等关键指标。原创 2025-08-23 08:45:45 · 549 阅读 · 0 评论 -
2026毕设选题-大数据/机器学习类选题参考-基于大数据Hadoop的网约车运营数据可视化分析系统-功能设计
(1)数据采集与存储 :采集网约车运营数据(含订单时间、轨迹坐标、用户评分等字段),使用Sqoop工具将数据导入Hadoop集群(HDFS)。搭建Hadoop生态系统(HDFS、MapReduce、YARN、Hive),确保数据存储与管理的可靠性。(2)数据处理与分析:基于MapReduce编写数据清洗程序,去除噪声数据和异常值,完成数据标准化。利用Hive构建数据仓库,执行SQL查询与聚合分析,提取用户行为模式、热门区域分布等关键指标。原创 2025-08-23 08:45:42 · 652 阅读 · 0 评论 -
2026毕设选题-大数据/机器学习类选题参考-基于大数据hadoop的网约车运营数据可视化分析系统-功能设计
(1)数据采集与存储 :采集网约车运营数据(含订单时间、轨迹坐标、用户评分等字段),使用Sqoop工具将数据导入Hadoop集群(HDFS)。搭建Hadoop生态系统(HDFS、MapReduce、YARN、Hive),确保数据存储与管理的可靠性。(2)数据处理与分析:基于MapReduce编写数据清洗程序,去除噪声数据和异常值,完成数据标准化。利用Hive构建数据仓库,执行SQL查询与聚合分析,提取用户行为模式、热门区域分布等关键指标。原创 2025-08-23 08:44:55 · 1053 阅读 · 0 评论