欧拉法求解微分方程_突破次元壁!一文解构神经常微分方程

全文共 5838字,预计学习时长 20分钟或更长
a24f63df024fe3c4d8cbaafde5f7def5.png

图片来源:unsplash.com/@alinnnaaaa

0131b9386cdf817ba8b7ce760a05625d.gif

神经常微分方程学习动力系统的图像

今天,本文将带你回顾2018年度神经信息处理系统大会(NIPS)中的最佳论文奖:《神经常微分方程》(Neural ODEs)Neural Ordinary Differential Equations。

论文传送门:https://arxiv.org/abs/1806.07366

这篇文章的重点将介绍神经常微分方程的实际用途、应用这种所需的神经网络类型的方式、原因以及可行性。

GitHub代码传送门:https://github.com/Rachnog/Neural-ODE-Experiments

d58d1996bb20226a37803b9c8cae7f80.png

为什么需要关注常微分方程?

首先,快速回顾一下什么是常微分方程。它描述了某个变量(这就是为什么是常微分)在某个过程中的变化,这种随时间的变化用导数来表示为:

ac6eba95a2555154730752aad7d3d965.png

简单的常微分方程例子

如果存在一些初始条件(变化过程的起始点),并且想要观察该过程将如何发展到某个最终状态的话,我们可以探讨此微分方程的求解。函数解也称为积分曲线(因为可以对方程进行积分得到解x(t))。让我们尝试使用SymPy包来求解上图中方程:

from sympy import dsolve, Eq, symbols, Functiont = symbols('t')x = symbols('x', cls=Function)deqn1 = Eq(x(t).diff(t), 1 - x(t))sol1 = dsolve(deqn1, x(t))

则会得出

Eq(x(t), C1*exp(-t) + 1)

其中C1是常数,可以在给定一些初始条件的情况下确定。如果以适当的形式给出,则可以用解析法求解,但通常用数值法求解。最古老、最简单的算法之一是欧拉法。其核心思想是用切线逐步逼近函数解:

17b26fcf157e81b381bab7cb7ef47e06.png

http://tutorial.math.lamar.edu/Classes/DE/EulersMe

请访问图片下面的链接以获得更详细的说明。但最后,对于此方程,我们可得出一个非常简单的公式:

6729e58ae5766c5ffe06a11f8597e344.png

http://tutorial.math.lamar.edu/Classes/DE/EulersMe

在n个时间步长的离散网格上的解为:

4455f330206a4ca1b53f72fbdc5f4eaa.png

http://tutorial.math.lamar.edu/Classes/DE/EulersMe

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值