pandas dataframe 写入到hive

pandas dataframe 写入hive表

关键流程主要分为两步:

1:将pandas dataframe转换为sparkdataframe:这一步骤主要使用spark自带的接口:

spark_df = spark.createDataFrame(pd_df)

2:将spark_df写入到hive的几种方式

spark_df.write.mode('overwrite').format("hive").saveAsTable("dbname.tablename")

以下是一个demo的完整代码:

import pandas as pd
import numpy as np
from pyspark import SparkContext,SparkConf
from pyspark.sql import HiveContext,SparkSession
from pyspark.sql import SQLContext

pd_df = pd.DataFrame(np.random.randint(0,10,(3,4)),columns=['a','b','c'])

spark = SparkSession.builder.appName('pd_2_hive').master('local').enableHiveSupport().getOrCreate()
spark_df = spark.createDataFrame(pd_df)

#spark dataframe 有接口可以直接写入到hive
spark_df.write.mode('overwrite').format("hive").saveAsTable("dbname.tablename")
'''
其中 overwrite 代表如果表中存在数据,那么新数据会将原来的数据覆盖,此外还有append等模式,详细介绍如下:
        * `append`: Append contents of this :class:`DataFrame` to existing data.
        * `overwrite`: Overwrite existing data.
        * `error` or `errorifexists`: Throw an exception if data already exists.
        * `ignore`: Silently ignore this operation if data already exists.
'''


#此外还可以将spark_df 注册为临时表,之后通过sql的方式写到hive里
spark_df.registerTempTable('tmp_table')
tmp_sql = '''create table dbname.tablename as select * from tmp_table'''
spark.sql(tmp_sql)
spark.stop()

至此,便完成了pandas dataframe 写入到 hive表的过程。

在将 Pandas DataFrame 存储到 Hive 中之前,需要先将其转换为 Spark DataFrame。可以使用 PySpark 的 SQLContext 或 SparkSession 对象创建 Spark DataFrame。假设已经创建了一个名为 `pandas_df` 的 Pandas DataFrame,然后可以执行以下步骤将其存储到 Hive 中: 1. 导入必要的库和模块: ```python from pyspark.sql import SparkSession, SQLContext ``` 2. 创建 SparkSession 对象: ```python spark = SparkSession.builder \ .appName("pandas_to_hive") \ .config("spark.sql.warehouse.dir", "/user/hive/warehouse") \ .enableHiveSupport() \ .getOrCreate() ``` 其中,`appName` 是应用程序名称,`config` 指定了 Hive 数据仓库的路径,`enableHiveSupport` 用于启用 Hive 支持。 3. 将 Pandas DataFrame 转换为 Spark DataFrame: ```python spark_df = spark.createDataFrame(pandas_df) ``` 4. 将 Spark DataFrame 存储到 Hive 中: ```python spark_df.write \ .mode("overwrite") \ .saveAsTable("database_name.table_name") ``` 其中,`mode` 指定了写入模式,`saveAsTable` 将数据写入到指定的表中,如果表不存在,则会自动创建。 完整示例代码如下: ```python from pyspark.sql import SparkSession, SQLContext import pandas as pd # 创建 SparkSession 对象 spark = SparkSession.builder \ .appName("pandas_to_hive") \ .config("spark.sql.warehouse.dir", "/user/hive/warehouse") \ .enableHiveSupport() \ .getOrCreate() # 读取 Pandas DataFrame pandas_df = pd.read_csv("path/to/csv/file.csv") # 将 Pandas DataFrame 转换为 Spark DataFrame spark_df = spark.createDataFrame(pandas_df) # 将 Spark DataFrame 存储到 Hivespark_df.write \ .mode("overwrite") \ .saveAsTable("database_name.table_name") ``` 请根据实际情况修改代码中的参数和路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值