最近要开始使用Transformer去做一些事情了,特地把与此相关的知识点记录下来,构建相关的、完整的知识结构体系,
以下是要写的文章,本文是这个系列的第十一篇:
- Transformer:Attention集大成者
- GPT-1 & 2: 预训练+微调带来的奇迹
- Bert: 双向预训练+微调
- Bert与模型压缩
- Bert与模型蒸馏:PKD和DistillBert
- ALBert: 轻量级Bert
- TinyBert: 模型蒸馏的全方位应用
- MobileBert: Pixel4上只需40ms
- 更多待续
- Bert与AutoML (待续)
- Bert变种
- Roberta: Bert调优
- Transformer优化之自适应宽度注意力
- Reformer: 局部敏感哈希和可逆残差带来的高效
- Longformer: 局部attentoin和全局attention的混搭(本篇)
- Linformer(待续)
- T5 (待续)
- 更多待续
- GPT-3
- 更多待续
Overall
Bert模型虽然很强大,但双向attention它的时间和空间复杂度呈N^2的趋势增长,所以最初的Bert模型能够处理的最长长度是512。
而在这一限制的基础上,如果想处理较长的序列,就需要用妥协的方式:
- 直接截断成512长度的。这点普遍用于文本分类问题。
- 截成多个长度为512的序列段(这些序列段可以互相overlapping),每个都输入给Bert获得输出,然后将多段的输出拼接起来。
- 两个阶段去解决问题,一般用于Question-Answer问题,第一个阶段去选择相关文档,第二个阶段去找到对应的answer。
无论哪种方式,毫无疑问都会带来损失。如果能直接处理长序列就好了。
关于这一点,我们在Reformer和自适应宽度注意力这两篇中各自讲述了办法去解决:
- Reformer使用局部敏感哈希来解决性能问题,动机就在于attention起作用的在于top-N而不是全部。
- 自适应宽度使用一种动态窗口的方法来解决,动机在于attention有可能只attend最近的一些context。
而今天的这篇论文[1],用了一种更加直接的方式去对attention进行改造。那就是局部attention和全局attention的结合,局部attention用来捕捉局部信息,一般用于底层,这点和自适应宽度其实有点像。全局attention则捕捉全局信息,用于高层,目的在于保持住所有的信息。除此之外,论文还提供了改造后的attention的C++实现优化,使之相对于pytorch中的naive实现有了很大的提升。
下图中有个对比,可以看到,在计算速度上,Longformer与Full attention持平,但Full attention在超过一定长度后因为内存问题就无法运行了,论文提供的实现要比pytorch的原始实现快6倍。而在内存上,Longformer则是线性增长的。
滑动窗口Attention
论文的核心就在于局部Attention的设计,在这里采用的是滑动窗口来做,滑动窗口的大小为w,那么每个位置只attend前后w/2个位置。如下图b所示。
因为模型都是多层叠加的,所以层级越高,attend的视野域就越广。如果w=3,那么第一层只能注意3个位置,但到第二层能注意到第一层输出的三个位置,换算到第一层的输入,就是5个位置。所以随着层级越高,理论上每个位置注意到的区域就越大,所能存储的信息就越接近全局attention时的状态。
旁白君:这点和卷积神经网络很像。
另外,每一层的w其实可以不同,鉴于越高层需要的全局信息越多,可以在层级较高的时候把w调大。
因为w远小于长度,所以有了滑动窗口,内存占用就从l^2变成了l乘以w,也就是线性。
滑动窗口+空洞Attention
上面的滑动窗口很类似于卷积,那么相应的,我们还可以像卷积一样加空洞,如下图c所示,这里有个参数d,意为空洞的大小。
空洞可以帮助attention在不增大内存占用的同时,增大视野域d倍。
全局Attention
在现在Bert架构中,只靠上面两个局部attention是不够的,因为储存的信息毕竟有限制,为了解决这个问题,所以全局attention应运而生。
这里的全局attention并不是所有位置attend所有位置,而是选中一些位置让它们之间去做两两的attention。而这些位置的选择,则与具体的问题相关。例如,对于文本分类问题而言,[CLS]这个特殊token会被当做所有信息的聚合点,因而这个位置肯定要被选中。而对于QA问题而言,所有的question的token上要去做全局attention。
旁白君: 其实这也是一种妥协,放弃了任务上的通用性。
QKV线性映射
回顾一下Attention的计算,对于一个序列的embedding,我们需要让它经过三个矩阵Q,K,V分别转化为q,k,v,然后q和k计算相似度,得到的权重再去和v做组合。
而有了全局attention和局部attention的区分后,我们也需要将这两种attention对应的QKV矩阵区分开,所以有两套QKV矩阵。
CUDA实现
在Tensorflow和pytorch的原始实现中,并没有用于计算滑动窗口attention的专门的实现,因为这个实现需要实现矩阵乘积且只要对角线的位置的非0值需要存在内存里。
而如果用for循环又异常的慢。所以用high-level的python struct描述了这种算法,并基于TVM生成了可以在GPU上编译的代码。在最上图可以看到,比naive实现快了6倍。
Attention的设置
正如上面提到的,在底层的时候使用较小的w,而在高层的时候w变大。这个参数设置需要做参数搜索,来平衡性能和效果。
另外,在底层不适用空洞attention,因为底层需要学习直接的局部信息。而在较高的层次会使用空洞attention,不过只限定在2个头上。
实验效果
在字符级的语言模型上,可以看到Longformer比之前的算法都要好。
而在消融实验中,可以看到递增w的策略和空洞attention都能带来提升。
为了节省训练的时间,用Roberta的参数来初始化Longformer,当然,因为结构的不同,需要做一些变动。得到的结果如下,可以看到,loss降了约8%~10%。
思考
勤思考,多提问是Engineer的良好品德。
- 用Roberta的checkpoint来初始化Longformer,需要做哪些变动?应该如何考虑?
参考
- [1]. Beltagy, Iz, Matthew E. Peters, and Arman Cohan. "Longformer: The long-document transformer." arXiv preprint arXiv:2004.05150 (2020).
欢迎加入预训练模型交流群 进群请添加AINLP小助手微信 AINLPer(id: ainlper),备注预训练模型
推荐阅读
这个NLP工具,玩得根本停不下来
征稿启示| 200元稿费+5000DBC(价值20个小时GPU算力)
完结撒花!李宏毅老师深度学习与人类语言处理课程视频及课件(附下载)
从数据到模型,你可能需要1篇详实的pytorch踩坑指南
如何让Bert在finetune小数据集时更“稳”一点
模型压缩实践系列之——bert-of-theseus,一个非常亲民的bert压缩方法
文本自动摘要任务的“不完全”心得总结番外篇——submodular函数优化
Node2Vec 论文+代码笔记
模型压缩实践收尾篇——模型蒸馏以及其他一些技巧实践小结
中文命名实体识别工具(NER)哪家强?
学自然语言处理,其实更应该学好英语
斯坦福大学NLP组Python深度学习自然语言处理工具Stanza试用
关于AINLP
AINLP 是一个有趣有AI的自然语言处理社区,专注于 AI、NLP、机器学习、深度学习、推荐算法等相关技术的分享,主题包括文本摘要、智能问答、聊天机器人、机器翻译、自动生成、知识图谱、预训练模型、推荐系统、计算广告、招聘信息、求职经验分享等,欢迎关注!加技术交流群请添加AINLPer(id:ainlper),备注工作/研究方向+加群目的。
阅读至此了,分享、点赞、在看三选一吧?