SnowFlake 算法,是 Twitter 开源的分布式 id 生成算法。其核心思想就是:使用一个 64 bit 的 long 型的数字作为全局唯一 id。在分布式系统中的应用十分广泛,且ID 引入了时间戳,基本上保持自增的。
这 64 个 bit 中,其中 1 个 bit 是不用的,然后用其中的 41 bit 作为毫秒数,用 10 bit 作为工作机器 id,12 bit 作为序列号。
给大家举个例子吧,比如下面那个 64 bit 的 long 型数字:
第一个部分是 1 个 bit:0,这个是无意义的,因为二进制中第一位是符号位,1表示负数,0表示正数。
第二个部分是 41 个 bit:表示的是时间戳。
第三个部分是 5 个 bit:表示的是机房 id,10001。
第四个部分是 5 个 bit:表示的是机器 id,1 1001。
第五个部分是 12 个 bit:表示的序号,就是某个机房某台机器上这一毫秒内同时生成的 id 的序号,0000 00000000。
简单来说,你的某个服务假设要生成一个全局唯一 id,那么就可以发送一个请求给部署了 SnowFlake 算法的系统,由这个 SnowFlake 算法系统来生成唯一 id。
这个 SnowFlake 算法系统首先肯定是知道自己所在的机房和机器的,比如机房 id = 17,机器 id = 12。
接着 SnowFlake 算法系统接收到这个请求之后,首先就会用二进制位运算的方式生成一个 64 bit 的 long 型 id,64 个 bit 中的第一个 bit 是无意义的。
接着 41 个 bit,就可以用当前时间戳(单位到毫秒),然后接着 5 个 bit 设置上这个机房 id,还有 5 个 bit 设置上机器 id。
最后再判断一下,当前这台机房的这台机器上这一毫秒内,这是第几个请求,给这次生成 id 的请求累加一个序号,作为最后的 12 个 bit。
雪花算法代码:
importjava.lang.management.ManagementFactory;importjava.lang.management.RuntimeMXBean;importjava.net.NetworkInterface;importjava.net.SocketException;importjava.util.Enumeration;/*** 雪花算法*/
public classSnowFlake {private final static long twepoch = 12888349746579L;//机器标识位数
private final static long workerIdBits = 5L;//数据中心标识位数
private final static long datacenterIdBits = 5L;//毫秒内自增位数
private final static long sequenceBits = 12L;//机器ID偏左移12位
private final static long workerIdShift =sequenceBits;//数据中心ID左移17位
private final static long datacenterIdShift = sequenceBits +workerIdBits;//时间毫秒左移22位
private final static long timestampLeftShift = sequenceBits + workerIdBits +datacenterIdBits;//sequence掩码,确保sequnce不会超出上限
private final static long sequenceMask = -1L ^ (-1L <
private static long lastTimestamp = -1L;//序列
private long sequence = 0L;//服务器ID
private long workerId = 1L;private static long workerMask = -1L ^ (-1L <
private long processId = 1L;private static long processMask = -1L ^ (-1L <
snowFlake= newSnowFlake();
}public static synchronized longnextId(){returnsnowFlake.getNextId();
}privateSnowFlake() {//获取机器编码
this.workerId=this.getMachineNum();//获取进程编码
RuntimeMXBean runtimeMXBean =ManagementFactory.getRuntimeMXBean();this.processId=Long.valueOf(runtimeMXBean.getName().split("@")[0]).longValue();//避免编码超出最大值
this.workerId=workerId &workerMask;this.processId=processId &processMask;
}public synchronized longgetNextId() {//获取时间戳
long timestamp =timeGen();//如果时间戳小于上次时间戳则报错
if (timestamp
}catch(Exception e) {
e.printStackTrace();
}
}//如果时间戳与上次时间戳相同
if (lastTimestamp ==timestamp) {//当前毫秒内,则+1,与sequenceMask确保sequence不会超出上限
sequence = (sequence + 1) &sequenceMask;if (sequence == 0) {//当前毫秒内计数满了,则等待下一秒
timestamp =tilNextMillis(lastTimestamp);
}
}else{
sequence= 0;
}
lastTimestamp=timestamp;//ID偏移组合生成最终的ID,并返回ID
long nextId = ((timestamp - twepoch) << timestampLeftShift) | (processId << datacenterIdShift) | (workerId << workerIdShift) |sequence;returnnextId;
}/*** 再次获取时间戳直到获取的时间戳与现有的不同
*@paramlastTimestamp
*@return下一个时间戳*/
private long tilNextMillis(final longlastTimestamp) {long timestamp = this.timeGen();while (timestamp <=lastTimestamp) {
timestamp= this.timeGen();
}returntimestamp;
}private longtimeGen() {returnSystem.currentTimeMillis();
}/*** 获取机器编码
*@return
*/
private longgetMachineNum(){longmachinePiece;
StringBuilder sb= newStringBuilder();
Enumeration e = null;try{
e=NetworkInterface.getNetworkInterfaces();
}catch(SocketException e1) {
e1.printStackTrace();
}while(e.hasMoreElements()) {
NetworkInterface ni=e.nextElement();
sb.append(ni.toString());
}
machinePiece=sb.toString().hashCode();returnmachinePiece;
}public static voidmain(String[] args) {newSnowFlake().getNextId();
}
}