java mapreduce实例_Mapreduce实例——排序

原理

Map、Reduce任务中Shuffle和排序的过程图如下:

122acc4eeb6fecb641e65ce43034c34f.png

流程分析:

1.Map端:

(1)每个输入分片会让一个map任务来处理,默认情况下,以HDFS的一个块的大小(默认为64M)为一个分片,当然我们也可以设置块的大小。map输出的结果会暂且放在一个环形内存缓冲区中(该缓冲区的大小默认为100M,由io.sort.mb属性控制),当该缓冲区快要溢出时(默认为缓冲区大小的80%,由io.sort.spill.percent属性控制),会在本地文件系统中创建一个溢出文件,将该缓冲区中的数据写入这个文件。

(2)在写入磁盘之前,线程首先根据reduce任务的数目将数据划分为相同数目的分区,也就是一个reduce任务对应一个分区的数据。这样做是为了避免有些reduce任务分配到大量数据,而有些reduce任务却分到很少数据,甚至没有分到数据的尴尬局面。其实分区就是对数据进行hash的过程。然后对每个分区中的数据进行排序,如果此时设置了Combiner,将排序后的结果进行Combia操作,这样做的目的是让尽可能少的数据写入到磁盘。

(3)当map任务输出最后一个记录时,可能会有很多的溢出文件,这时需要将这些文件合并。合并的过程中会不断地进行排序和combia操作,目的有两个:①尽量减少每次写入磁盘的数据量。②尽量减少下一复制阶段网络传输的数据量。最后合并成了一个已分区且已排序的文件。为了减少网络传输的数据量,这里可以将数据压缩,只要将mapred.compress.map.out设置为true就可以了。

(4)将分区中的数据拷贝给相对应的reduce任务。有人可能会问:分区中的数据怎么知道它对应的reduce是哪个呢?其实map任务一直和其父TaskTracker保持联系,而TaskTracker又一直和JobTracker保持心跳。所以JobTracker中保存了整个集群中的宏观信息。只要reduce任务向JobTracker获取对应的map输出位置就ok了哦。

到这里,map端就分析完了。那到底什么是Shuffle呢?Shuffle的中文意思是"洗牌",如果我们这样看:一个map产生的数据,结果通过hash过程分区却分配给了不同的reduce任务,是不是一个对数据洗牌的过程呢?

2.Reduce端:

(1)Reduce会接收到不同map任务传来的数据,并且每个map传来的数据都是有序的。如果reduce端接受的数据量相当小,则直接存储在内存中(缓冲区大小由mapred.job.shuffle.input.buffer.percent属性控制,表示用作此用途的堆空间的百分比),如果数据量超过了该缓冲区大小的一定比例(由mapred.job.shuffle.merge.percent决定),则对数据合并后溢写到磁盘中。

(2)随着溢写文件的增多,后台线程会将它们合并成一个更大的有序的文件,这样做是为了给后面的合并节省时间。其实不管在map端还是reduce端,MapReduce都是反复地执行排序,合并操作,现在终于明白了有些人为什么会说:排序是hadoop的灵魂。

(3)合并的过程中会产生许多的中间文件(写入磁盘了),但MapReduce会让写入磁盘的数据尽可能地少,并且最后一次合并的结果并没有写入磁盘,而是直接输入到reduce函数。

熟悉MapReduce的人都知道:排序是MapReduce的天然特性!在数据达到reducer之前,MapReduce框架已经对这些数据按键排序了。但是在使用之前,首先需要了解它的默认排序规则。它是按照key值进行排序的,如果key为封装的int为IntWritable类型,那么MapReduce按照数字大小对key排序,如果Key为封装String的Text类型,那么MapReduce将按照数据字典顺序对字符排序。

了解了这个细节,我们就知道应该使用封装int的Intwritable型数据结构了,也就是在map这里,将读入的数据中要排序的字段转化为Intwritable型,然后作为key值输出(不排序的字段作为value)。reduce阶段拿到之后,将输入的key作为的输出key,并根据value-list中的元素的个数决定输出的次数。

实验环境

Linux Ubuntu 14.04

jdk-7u75-linux-x64

hadoop-2.6.0-cdh5.4.5

hadoop-2.6.0-eclipse-cdh5.4.5.jar

eclipse-java-juno-SR2-linux-gtk-x86_64

实验内容

在电商网站上,当我们进入某电商页面里浏览商品时,就会产生用户对商品访问情况的数据 ,名为goods_visit1,goods_visit1中包含(商品id ,点击次数)两个字段,内容以"\t"分割,由于数据量很大,所以为了方便统计我们只截取它的一部分数据,内容如下:

商品id点击次数

1010037 100

1010102 100

1010152 97

1010178 96

1010280 104

1010320 103

1010510 104

1010603 96

1010637 97

要求我们编写mapreduce程序来对商品点击次数有低到高进行排序。

实验结果数据如下:

点击次数商品ID

96  1010603

96  1010178

97  1010637

97  1010152

100 1010102

100 1010037

103 1010320

104 1010510

104 1010280

实验步骤

1.切换到/apps/hadoop/sbin目录下,开启Hadoop。

cd /apps/hadoop/sbin

./start-all.sh

2.在Linux本地新建/data/mapreduce3目录。

mkdir -p /data/mapreduce3

3.在Linux中切换到/data/mapreduce3目录下,用wget命令从http://192.168.1.100:60000/allfiles/mapreduce3/goods_visit1网址上下载文本文件goods_visit1。

cd /data/mapreduce3

wget http://192.168.1.100:60000/allfiles/mapreduce3/goods_visit1

然后在当前目录下用wget命令从http://192.168.1.100:60000/allfiles/mapreduce3/hadoop2lib.tar.gz网址上下载项目用到的依赖包。

wget http://192.168.1.100:60000/allfiles/mapreduce3/hadoop2lib.tar.gz

将hadoop2lib.tar.gz解压到当前目录下。

tar zxvf hadoop2lib.tar.gz

4.首先在HDFS上新建/mymapreduce3/in目录,然后将Linux本地/data/mapreduce3目录下的goods_visit1文件导入到HDFS的/mymapreduce3/in目录中。

hadoop fs -mkdir -p /mymapreduce3/in

hadoop fs -put /data/mapreduce3/goods_visit1 /mymapreduce3/in

5.新建Java Project项目,项目名为mapreduce3。

685ac2965d7964edf072c5a486ca9e63.png

74bb508c14eead9b7da5321f3b7d3d6e.png

在mapreduce3项目下新建包,包名为mapreduce。

0702f1987ed50bdd4753b474dac36be9.png

739586194d0af49c0badbf5a3b79c78c.png

在mapreduce包下新建类,类名为OneSort。

9290d2dc7dfb469a565e7f6e0da2e15c.png

cd40189016760b8a92158fc8e990300d.png

6.添加项目所需依赖的jar包,右键单击项目新建一个文件夹,名为hadoop2lib,用于存放项目所需的jar包。

153fec11f08cb6c46dec4e242ff6eb14.png

473c7edf9f9dd0537bfa427c0f9803e6.png

将/data/mapreduce3目录下hadoop2lib文件夹中的所有jar包,拷贝到eclipse中mapreduce3项目的hadoop2lib目录下。

36b00c58e6c991b84356917166402211.png

选中hadoop2lib目录下所有jar包,单击右键,选择Build Path→Add to Build Path。

13ee34a22037962a24b6f0ff65ee2cfa.png

7.编写Java代码,并描述其设计思路

在MapReduce过程中默认就有对数据的排序。它是按照key值进行排序的,如果key为封装int的IntWritable类型,那么MapReduce会按照数字大小对key排序,如果Key为封装String的Text类型,那么MapReduce将按照数据字典顺序对字符排序。在本例中我们用到第一种,key设置为IntWritable类型,其中MapReduce程序主要分为Map部分和Reduce部分。

Map部分代码

publicstaticclassMap extendsMapper{

privatestaticText goods=newText();

privatestaticIntWritable num=newIntWritable();

publicvoidmap(Object key,Text value,Context context) throwsIOException, InterruptedException{

String line=value.toString();

String arr[]=line.split("\t");

num.set(Integer.parseInt(arr[1]));

goods.set(arr[0]);

context.write(num,goods);

}

}

在map端采用Hadoop默认的输入方式之后,将输入的value值用split()方法截取,把要排序的点击次数字段转化为IntWritable类型并设置为key,商品id字段设置为value,然后直接输出。map输出的先要经过shuffle过程把相同key值的所有value聚集起来形成后交给reduce端。

Reduce部分代码

publicstaticclassReduce extendsReducer{

privatestaticIntWritable result= newIntWritable();

//声明对象result

publicvoidreduce(IntWritable key,Iterable values,Context context) throwsIOException, InterruptedException{

for(Text val:values){

context.write(key,val);

}

}

}

reduce端接收到之后,将输入的key直接复制给输出的key,用for循环遍历value-list并将里面的元素设置为输出的value,然后将逐一输出,根据value-list中元素的个数决定输出的次数。

完整代码

packagemapreduce;

importjava.io.IOException;

importorg.apache.hadoop.conf.Configuration;

importorg.apache.hadoop.fs.Path;

importorg.apache.hadoop.io.IntWritable;

importorg.apache.hadoop.io.Text;

importorg.apache.hadoop.mapreduce.Job;

importorg.apache.hadoop.mapreduce.Mapper;

importorg.apache.hadoop.mapreduce.Reducer;

importorg.apache.hadoop.mapreduce.lib.input.FileInputFormat;

importorg.apache.hadoop.mapreduce.lib.input.TextInputFormat;

importorg.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

importorg.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

publicclassOneSort {

publicstaticclassMap extendsMapper{

privatestaticText goods=newText();

privatestaticIntWritable num=newIntWritable();

publicvoidmap(Object key,Text value,Context context) throwsIOException, InterruptedException{

String line=value.toString();

String arr[]=line.split("\t");

num.set(Integer.parseInt(arr[1]));

goods.set(arr[0]);

context.write(num,goods);

}

}

publicstaticclassReduce extendsReducer{

privatestaticIntWritable result= newIntWritable();

publicvoidreduce(IntWritable key,Iterable values,Context context) throwsIOException, InterruptedException{

for(Text val:values){

context.write(key,val);

}

}

}

publicstaticvoidmain(String[] args) throwsIOException, ClassNotFoundException, InterruptedException{

Configuration conf=newConfiguration();

Job job =newJob(conf,"OneSort");

job.setJarByClass(OneSort.class);

job.setMapperClass(Map.class);

job.setReducerClass(Reduce.class);

job.setOutputKeyClass(IntWritable.class);

job.setOutputValueClass(Text.class);

job.setInputFormatClass(TextInputFormat.class);

job.setOutputFormatClass(TextOutputFormat.class);

Path in=newPath("hdfs://localhost:9000/mymapreduce3/in/goods_visit1");

Path out=newPath("hdfs://localhost:9000/mymapreduce3/out");

FileInputFormat.addInputPath(job,in);

FileOutputFormat.setOutputPath(job,out);

System.exit(job.waitForCompletion(true) ? 0 : 1);

}

}

8.在OneSort类文件中,右键并点击=>Run As=>Run on Hadoop选项,将MapReduce任务提交到Hadoop中。

ddf688b946e2565e5a19b446c890414c.png

9.待执行完毕后,进入命令模式下,在HDFS上/mymapreduce3/out中查看实验结果。

hadoop fs -ls /mymapreduce3/out

hadoop fs -cat /mymapreduce3/out/part-r-00000

cebbdcb57a68e939a4058b86d7ac7299.png

窗体顶端

窗体底端

基于hadoop的Hive数据仓库JavaAPI简单调用的实例,关于Hive的简介在此不赘述。hive提供了三种用户接口:CLI,JDBC/ODBC和 WebUI CLI,即Shell命令行 JDBC/ODBC 是 Hive 的Java,与使用传统数据库JDBC的方式类似 WebGUI是通过浏览器访问 Hive 本文主要介绍的就是第二种用户接口,直接进入正题。 1、Hive 安装: 1)hive的安装请参考网上的相关文章,测试时只在hadoop一个节点上安装hive即可。 2)测试数据data文件'\t'分隔: 1 zhangsan 2 lisi 3 wangwu 3)将测试数据data上传到linux目录下,我放置在:/home/hadoop01/data 2、在使用 JDBC 开发 Hive 程序时, 必须首先开启 Hive 的远程服务接口。使用下面命令进行开启: Java代码 收藏代码 hive --service hiveserver >/dev/null 2>/dev/null & 我们可以通过CLI、Client、Web UI等Hive提供的用户接口来和Hive通信,但这三种方式最常用的是CLI;Client 是Hive的客户端,用户连接至 Hive Server。在启动 Client 模式的时候,需要指出Hive Server所在节点,并且在该节点启动 Hive Server。 WUI 是通过浏览器访问 Hive。今天我们来谈谈怎么通过HiveServer来操作Hive。   Hive提供了jdbc驱动,使得我们可以用Java代码来连接Hive并进行一些类关系型数据库的sql语句查询等操作。同关系型数据库一样,我们也需要将Hive的服务打开;在Hive 0.11.0版本之前,只有HiveServer服务可用,你得在程序操作Hive之前,必须在Hive安装的服务器上打开HiveServer服务,如下: 1 [wyp@localhost/home/q/hive-0.11.0]$ bin/hive --service hiveserver -p10002 2 Starting Hive Thrift Server 上面代表你已经成功的在端口为10002(默认的端口是10000)启动了hiveserver服务。这时候,你就可以通过Java代码来连接hiveserver,代码如下:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值