pipeline管道机制使用方法:
流水线的输入为一连串的数据挖掘步骤,其中最后一步必须是估计器(Estimator),可理解成分类器
前几步是转换器(Transformer)。输入的数据集经过转换器的处理后,输出的结果作为下一步的输入。
最后,用位于流水线最后一步的估计器对数据进行分类。
#coding=gbk
#sklearn 中pipeline管道机制的使用
'''
流水线的功能:
跟踪记录各步骤的操作(以方便地重现实验结果)
对各步骤进行一个封装
确保代码的复杂程度不至于超出掌控范围
'''
import pandas as pd
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import LabelEncoder
data = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/'
'breast-cancer-wisconsin/wdbc.data', header=None)
print(data.shape)
x, y = data.values[:,2:],data.values[:,1]
encoder = LabelEncoder()
y= encoder.fit_transform(y) #将 标签 'm', 'b' 转换成1,0
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size= 0.2,random_state= 666)
#使用pipeline管道机制
from sklearn.preprocessing import StandardScaler #规范化,使各特征的均值为1,方差为0
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
pipe = Pipeline([('sc',StandardScaler()),
('pca',PCA(n_components=2)),
('clf',LogisticRegression(random_state=666)) #设置随机种子,使测试结果复现
])
pipe.fit(x_train, y_train)
print('Test accuracy is %.3f' % pipe.score(x_test, y_test))
# Test accuracy is 0.921
当我们执行 pipe.fit(X_train, y_train)时,首先由StandardScaler在训练集上执行 fit和transform方法,transformed后的数据又被传递给Pipeline对象的下一步,也即PCA()。和StandardScaler一样,PCA也是执行fit和transform方法,最终将转换后的数据传递给 LosigsticRegression
————————————————
版权声明:本文为CSDN博主「蜘蛛侠不会飞」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_40587575/java/article/details/80987742