文字版显示缺陷严重,详情可至文末查看文档图片。
关于本性奇点的性质
在复变函数中,对于解析函数的孤立奇点,本性奇点(Essential Singularity) 是奇点中的“严谨”的一类。函数在本性奇点附近会有“极端”的行为。本性奇点附 近的行为可以用魏尔斯特拉斯(Weierstrass)定理或更为强大的皮卡(Picard)定理 描述。
魏尔斯特拉斯(Weierstrass)定理:如果z0 是 f (z)的本性奇点,则对任何复 数A(可为),存在一个收敛于z0 的点列{zn}使得lim f (zn ) A (即z0 {zn},
n
f ( z n ) A )。 魏尔斯特拉斯(Weierstrass)定理的几何意义:解析函数在本性奇点处发散
到 z 平面上任意一点。
皮卡(Picard)定理:如果z0 是 f (z)的本性奇点,则对每一个复数A(A≠∞),除
掉 可 能 一 个 值 A = A 0 外 , 必 有 趋 于 z 0 的 无 穷 点 列 { z n } , f ( z n ) A ( n = 1 , 2 , 3 ... . )。
(如果点 z0 是 f(z)的本性奇点,那么在任何含有 z0 的开集中,f(z)都将取得 所有可能的复数值,最多只有一个例外。)
1
例:z0是函数f(z)ez 的本性奇点,研究其性质。
魏尔施特拉斯定理
1)设A=∞,取zk 1,我们有 f(zn)en (当n时)
即 A=∞,点列{1}适合魏尔斯特拉斯定理中的论断。
1
2)设A=0,取z ,我们有 f(z )en (当n时)
n
n
knn
1
即 A=0,点列{ n} 适合魏尔斯特拉斯定理中的论断。
11 3)设A0,A,由方程ez A来求相应的zn。我们得到 zLnA
于是 zn= 1 (n0,1,2,) ln A2ni
若取 zn 1 (n0,1,2,) ln A2ni
我们就得到收敛于 0 且满足条件 f (zn ) A的点列{zn}。于是
lim f(zn)A n
皮卡定理
除 A=0 外,点列{zn}不但满足极限等式 lim f ( z n ) A ,而且满足准确等式
n
f ( z n ) A 。因为指数函数 ez 永远不能是零,e1/z 在 0 处具有本性奇点,但仍然不
能取得零。
函数 exp(1/z),在 z=0 处具有本性奇点(z 的色相表示它的辐角,而发光度则表 示绝对值)。这个图像说明了接近于奇点时,可以取得任何非零的值。
同样方法可以研究函数 f(z)sin(1)等。
部分公式由于无法正确显示,见图片版文档:

