复数的指数函数性质_关于本性奇点的性质

文字版显示缺陷严重,详情可至文末查看文档图片。

关于本性奇点的性质

在复变函数中,对于解析函数的孤立奇点,本性奇点(Essential Singularity) 是奇点中的“严谨”的一类。函数在本性奇点附近会有“极端”的行为。本性奇点附 近的行为可以用魏尔斯特拉斯(Weierstrass)定理或更为强大的皮卡(Picard)定理 描述。

魏尔斯特拉斯(Weierstrass)定理:如果z0 是 f (z)的本性奇点,则对任何复 数A(可为),存在一个收敛于z0 的点列{zn}使得lim f (zn )  A (即z0 {zn},

n

f ( z n )  A )。 魏尔斯特拉斯(Weierstrass)定理的几何意义:解析函数在本性奇点处发散

到 z 平面上任意一点。

皮卡(Picard)定理:如果z0 是 f (z)的本性奇点,则对每一个复数A(A≠∞),除

掉 可 能 一 个 值 A = A 0 外 , 必 有 趋 于 z 0 的 无 穷 点 列 { z n } , f ( z n )  A ( n = 1 , 2 , 3 ... . )。

(如果点 z0 是 f(z)的本性奇点,那么在任何含有 z0 的开集中,f(z)都将取得 所有可能的复数值,最多只有一个例外。)

1

例:z0是函数f(z)ez 的本性奇点,研究其性质。

魏尔施特拉斯定理

1)设A=∞,取zk 1,我们有 f(zn)en  (当n时)

即 A=∞,点列{1}适合魏尔斯特拉斯定理中的论断。

1

2)设A=0,取z  ,我们有 f(z )en  (当n时)

n

n

knn

1

即 A=0,点列{ n} 适合魏尔斯特拉斯定理中的论断。

11 3)设A0,A,由方程ez A来求相应的zn。我们得到 zLnA

于是 zn= 1 (n0,1,2,) ln A2ni

若取 zn  1 (n0,1,2,) ln A2ni

我们就得到收敛于 0 且满足条件 f (zn )  A的点列{zn}。于是

lim f(zn)A n

皮卡定理

除 A=0 外,点列{zn}不但满足极限等式 lim f ( z n )  A ,而且满足准确等式

n

f ( z n )  A 。因为指数函数 ez 永远不能是零,e1/z 在 0 处具有本性奇点,但仍然不

能取得零。

函数 exp(1/z),在 z=0 处具有本性奇点(z 的色相表示它的辐角,而发光度则表 示绝对值)。这个图像说明了接近于奇点时,可以取得任何非零的值。

同样方法可以研究函数 f(z)sin(1)等。

部分公式由于无法正确显示,见图片版文档:

3f78ffe4449acf8cf69ee228628b8eaf.png

3c78ea6568923b765559d51d61e92f1f.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值