解析数论基础:S(T)的性质
1.背景介绍
在数论和解析数论中,S(T)是一个非常重要的函数,它描述了素数分布的密度。这个函数最早由德国数学家P.G.Lejeune Dirichlet在1837年提出,被称为Dirichlet级数。它的研究对于解决著名的黎曼猜想等重大数学难题具有重要意义。
S(T)函数的定义如下:
$$S(T) = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^T}$$
其中$\Lambda(n)$是von Mangoldt函数,定义为:
$$\Lambda(n) = \begin{cases} \ln p & \text{如果 n = p^k,p为素数,k \geq 1} \ 0 & \text{其他情况} \end{cases}$$
S(T)函数在整个复平面上都有定义,但我们主要关注它在实数轴上的性质。
2.核心概念与联系
S(T)函数与另一个著名的函数——黎曼zeta函数$\zeta(s)$有着密切的联系:
$$\zeta(s) = \sum_{n=1}^{\infty}\frac{1}{n^s}$$
事实上,S(T)是$\zeta'(s)/\zeta(s)$的Mellin变换,即:
$$S(T) = \frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}\frac{\zeta&