BEGIN:
python装饰器
装饰器(Decorators)是Python的一个重要部分。简单地说:装饰器是修改其他函数的功能的函数。他们有助于让我们的代码更简短,也更Pythonic(Python范儿)。
一切皆对象
在python中你所看到的用到的几乎都是对象。下面举个例子重新认识一下python函数
def hi(name="yasoob"):return "hi" +nameprint(hi())#output: 'hi yasoob'
#我们甚至可以将一个函数赋值给一个变量,比如
greet =hi#我们这里没有在使用小括号,因为我们并不是在调用hi函数#而是在将它放在greet变量里头。我们尝试运行下这个
print(greet())#output: 'hi yasoob'
#如果我们删掉旧的hi函数,看看会发生什么!
delhiprint(hi())#outputs: NameError
print(greet())#outputs: 'hi yasoob'
上述:函数可以直接调用,也可以作为一个值赋给另一个变量,使得新变量拥有函数地址,进而通过新变量访问函数。
在函数中定义函数
java语言中也有内函数,而在python中将更为灵活。
def hi(name="yasoob"):print("now you are inside the hi() function")defgreet():return "now you are in the greet() function"
defwelcome():return "now you are in the welcome() function"
print(greet())print(welcome())print("now you are back in the hi() function")
hi()#output:now you are inside the hi() function#now you are in the greet() function#now you are in the welcome() function#now you are back in the hi() function
#上面展示了无论何时你调用hi(), greet()和welcome()将会同时被调用。#然后greet()和welcome()函数在hi()函数之外是不能访问的,比如:
greet()#outputs: NameError: name 'greet' is not defined
上述:函数中可以嵌套创建函数
从函数中返回函数
谨记python一切皆对象原则,函数同样可以作为变量返回,如:
def hi(name="yasoob"):defgreet():return "now you are in the greet() function"
defwelcome():return "now you are in the welcome() function"
if name == "yasoob":returngreetelse:returnwelcome
a=hi()print(a)#outputs:
#上面清晰地展示了`a`现在指向到hi()函数中的greet()函数#现在试试这个
print(a())#outputs: now you are in the greet() function
上述:当我们写下 a = hi(),hi() 会被执行,而由于 name 参数默认是 yasoob,所以函数 greet 被返回了。如果我们把语句改为 a = hi(name = "ali"),那么 welcome 函数将被返回。我们还可以打印出 hi()(),这会输出 now you are in the greet() function。
将函数作为参数传递
函数不仅能作为变量,同样也能像参数一样进行传递。如:
defhi():return "hi yasoob!"
defdoSomethingBeforeHi(func):print("I am doing some boring work before executing hi()")print(func())
doSomethingBeforeHi(hi)#outputs:I am doing some boring work before executing hi()#hi yasoob!
普通装饰器
1 第一个装饰器:
defa_new_decorator(a_func):defwrapTheFunction():print("I am doing some boring work before executing a_func()")
a_func()print("I am doing some boring work after executing a_func()")returnwrapTheFunctiondefa_function_requiring_decoration():print("I am the function which needs some decoration to remove my foul smell")
a_function_requiring_decoration()#outputs: "I am the function which needs some decoration to remove my foul smell"
a_function_requiring_decoration=a_new_decorator(a_function_requiring_decoration)#now a_function_requiring_decoration is wrapped by wrapTheFunction()
a_function_requiring_decoration()#outputs:I am doing some boring work before executing a_func()#I am the function which needs some decoration to remove my foul smell#I am doing some boring work after executing a_func()
上述:a_new_decorator装饰了a_function_requiring_decoration的参数即将函数a_function_requiring_decoration作为a_new_decorator的参数并执行函数a_new_decorator
2 用@简短装饰
@a_new_decoratordefa_function_requiring_decoration():"""Hey you! Decorate me!"""
print("I am the function which needs some decoration to"
"remove my foul smell")
a_function_requiring_decoration()#outputs: I am doing some boring work before executing a_func()#I am the function which needs some decoration to remove my foul smell#I am doing some boring work after executing a_func()
#the @a_new_decorator is just a short way of saying:
a_function_requiring_decoration = a_new_decorator(a_function_requiring_decoration)
上述:在函数前加上@a_new_decorator相当于将该函数作为a_new_decorator的参数并执行函数a_new_decorator
上面两种方法运行:
print(a_function_requiring_decoration.__name__)#Output: wrapTheFunction
输出内容会被修改为作为装饰器的函数名,这并不是我们想要的!Ouput输出应该是"a_function_requiring_decoration"。这里的函数被warpTheFunction替代了。它重写了我们函数的名字和注释文档(docstring)。幸运的是Python提供给我们一个简单的函数来解决这个问题,那就是functools.wraps。
3 使用functools.wraps
from functools importwrapsdefa_new_decorator(a_func):
@wraps(a_func)defwrapTheFunction():print("I am doing some boring work before executing a_func()")
a_func()print("I am doing some boring work after executing a_func()")returnwrapTheFunction
@a_new_decoratordefa_function_requiring_decoration():"""Hey yo! Decorate me!"""
print("I am the function which needs some decoration to"
"remove my foul smell")print(a_function_requiring_decoration.__name__)#Output: a_function_requiring_decoration
4 蓝本规范
from functools importwrapsdefdecorator_name(f):
@wraps(f)def decorated(*args, **kwargs):if notcan_run:return "Function will not run"
return f(*args, **kwargs)returndecorated
@decorator_namedeffunc():return("Function is running")
can_run=Trueprint(func())#Output: Function is running
can_run=Falseprint(func())#Output: Function will not run
注意:@wraps接受一个函数来进行装饰,并加入了复制函数名称、注释文档、参数列表等等的功能。这可以让我们在装饰器里面访问在装饰之前的函数的属性。
5 例子
授权(Authorization)
装饰器能有助于检查某个人是否被授权去使用一个web应用的端点(endpoint)。它们被大量使用于Flask和Django web框架中。这里是一个例子来使用基于装饰器的授权
from functools importwrapsdefrequires_auth(f):
@wraps(f)def decorated(*args, **kwargs):
auth=request.authorizationif not auth or notcheck_auth(auth.username, auth.password):
authenticate()return f(*args, **kwargs)return decorated
日志(Logging)
日志是装饰器运用的另一个亮点。这是个例子:
from functools importwrapsdeflogit(func):
@wraps(func)def with_logging(*args, **kwargs):print(func.__name__ + "was called")return func(*args, **kwargs)returnwith_logging
@logitdefaddition_func(x):"""Do some math."""
return x +x
result= addition_func(4)#Output: addition_func was called
带参数的装饰器
我们回到日志的例子,并创建一个包裹函数,能让我们指定一个用于输出的日志文件。
from functools importwrapsdef logit(logfile='out.log'):deflogging_decorator(func):
@wraps(func)def wrapped_function(*args, **kwargs):
log_string= func.__name__ + "was called"
print(log_string)#打开logfile,并写入内容
with open(logfile, 'a') as opened_file:#现在将日志打到指定的logfile
opened_file.write(log_string + '\n')return func(*args, **kwargs)returnwrapped_functionreturnlogging_decorator
@logit()defmyfunc1():passmyfunc1()#Output: myfunc1 was called#现在一个叫做 out.log 的文件出现了,里面的内容就是上面的字符串
@logit(logfile='func2.log')defmyfunc2():passmyfunc2()#Output: myfunc2 was called#现在一个叫做 func2.log 的文件出现了,里面的内容就是上面的字符串
装饰器类
现在我们有了能用于正式环境的logit装饰器,但当我们的应用的某些部分还比较脆弱时,异常也许是需要更紧急关注的事情。比方说有时你只想打日志到一个文件。而有时你想把引起你注意的问题发送到一个email,同时也保留日志,留个记录。这是一个使用继承的场景,但目前为止我们只看到过用来构建装饰器的函数。
幸运的是,类也可以用来构建装饰器。那我们现在以一个类而不是一个函数的方式,来重新构建logit。
from functools importwrapsclasslogit(object):def __init__(self, logfile='out.log'):
self.logfile=logfiledef __call__(self, func):
@wraps(func)def wrapped_function(*args, **kwargs):
log_string= func.__name__ + "was called"
print(log_string)#打开logfile并写入
with open(self.logfile, 'a') as opened_file:#现在将日志打到指定的文件
opened_file.write(log_string + '\n')#现在,发送一个通知
self.notify()return func(*args, **kwargs)returnwrapped_functiondefnotify(self):#logit只打日志,不做别的
pass
这个实现有一个附加优势,在于比嵌套函数的方式更加整洁,而且包裹一个函数还是使用跟以前一样的语法:
@logit()defmyfunc1():pass
参考:
[1] https://www.runoob.com/w3cnote/python-func-decorators.html
[2] https://eastlakeside.gitbook.io/interpy-zh/decorators
END.