python中upper用法_Python Pandas Series.clip_upper()用法及代码示例

Python是进行数据分析的一种出色语言,主要是因为以数据为中心的Python软件包具有奇妙的生态系统。 Pandas是其中的一种,使导入和分析数据更加容易。

Pandas Series.clip_upper()用于裁剪超过传递的最大值的值。阈值作为参数传递,并且所有大于阈值的串联值都等于阈值。

用法:Series.clip_upper(threshold, axis=None, inplace=False)

参数:

threshold:数字或类似列表,设置最大阈值,如果是列表,则为调用者系列中的每个值设置单独的阈值(给定列表大小相同)

axis:0或“索引”按行应用方法,1或“列”按列应用。

inplace:在调用者系列本身中进行更改。 (用新值覆盖)

返回类型:具有更新值的系列

要下载以下示例中使用的数据集,请单击此处。在以下示例中,使用的 DataFrame 包含一些NBA球员的数据。下面是任何操作之前的数据帧图像。

例子1:适用于单值系列

在此示例中,最大阈值26作为参数传递给.clip_upper()方法。在数据帧的Age列上调用此方法,并将新值存储在Age_new列中。在执行任何操作之前,使用.dropna()删除空行

# importing pandas module

import pandas as pd

# making data frame

data = pd.read_csv("https://media.geeksforgeeks.org/wp-content/uploads/nba.csv")

# removing null values to avoid errors

data.dropna(inplace = True)

# setting threshold value

threshold = 26.0

# applying method and passing to new column

data["Age_new"]= data["Age"].clip_upper(threshold)

# displaying top 10 rows

data.head(10)

输出:

如输出图像中所示,Age_new列的最大值为26。超过26的所有值均被裁剪并等于26。

范例2:应用于具有列表类型值的系列

在此示例中,使用以下方法提取并存储“年龄”列的前10行:.head()方法。之后,将创建一个相同长度的列表,并将其传递给的阈值参数.clip_upper()为串联的每个值设置单独的阈值的方法。返回的值存储在新列“ clipped_values”中。

# importing pandas module

import pandas as pd

# importing regex module

import re

# making data frame

data = pd.read_csv("https://media.geeksforgeeks.org /wp-content/uploads/nba.csv")

# removing null values to avoid errors

data.dropna(inplace = True)

# returning top rows

new_data = data.head(10).copy()

# list for separate threshold values

threshold =[27, 23, 19, 30, 26, 22, 22, 41, 11, 33]

# applying method and returning to new column

new_data["Clipped values"]= new_data["Age"].clip_upper(threshold = threshold)

# display

new_data

输出:

如输出图像所示,根据传递的列表,每个串联的值都有不同的阈值,因此,根据每个元素的单独阈值返回结果。所有比其各自的阈值大的值都被缩减到阈值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值