PyTorch是一个提供两个高级功能的python包:
具有强GPU加速度的张量计算(如numpy)
深层神经网络建立在基于磁带的自动调整系统上
您可以重用您最喜爱的python软件包,如numpy,scipy和Cython,以便在需要时扩展PyTorch。
PyTorch在细粒度级别是由以下组件组成的库:
包 描述
torch 像NumPy这样的Tensor图书馆,拥有强大的GPU支持
torch.autograd 一种基于磁带的自动分类库,支持所有可区分的Tensor操作手电筒
torch.nn 一个神经网络库与autograd设计了最大的灵活性torch.optim 一种与torch.nn一起使用的优化包,具有标准优化方法,如SGD,RMSProp,LBFGS,Adam等。
torch.multiprocessing python多处理,但是具有魔法内存共享的手电筒传感器跨过程。适用于数据加载和hogwild培训。torch.utils DataLoader,Trainer等实用功能为方便起见
torch.legacy(.nn / .optim) 由于向后兼容性原因,已经从割炬移植的旧代码
通常使用PyTorch可以:
使用GPU的功能代替numpy。
一个深刻的学习研究平台,提供最大的灵活性和速度
进一步阐述:
GPU准备好的Tensor库
如果你使用numpy,那么你已经使用了Tensors(aka ndarray)。
PyTorch提