当你完成图像分割之后,图像轮廓检测往往可以进一步筛选你要的目标,OpenCV中可以使用cv2.findContours来得到轮廓。
1. 基本使用方法如下:
轮廓检测
import cv2
import numpy as np
img = cv2.imread('black_rect1.png', 0)
ret, th = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV)
contours, hierarchy = cv2.findContours(th,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
color_img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
img = cv2.drawContours(color_img, contours, -1, (255, 0, 0), 2)
# bitwise_not对二值图像取反
cv2.imshow('th_img', cv2.bitwise_not(th))
cv2.imshow('contours_img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
补充:
再不少场景中,找轮廓的最小外接矩形是基本需求,opencv中minAreaRect得到的是一个带有旋转角度信息的rect,可以使用cv2.boxPoints(rect)来将其转为矩形的四个顶点坐标(浮点类型).你也可以使用cv2.polylines来绘制这样的轮廓信息