python提取文字的轮廓_OpenCV-Python系列八:提取图像轮廓

本文介绍了如何使用OpenCV-Python进行图像轮廓检测,包括基本的轮廓提取方法、最小外接矩形轮廓绘制、轮廓函数解析以及轮廓的近似处理。通过实例代码展示了cv2.findContours、cv2.minAreaRect、cv2.approxPolyDP等函数的使用,帮助理解轮廓处理在机器视觉中的应用。
摘要由CSDN通过智能技术生成

当你完成图像分割之后,图像轮廓检测往往可以进一步筛选你要的目标,OpenCV中可以使用cv2.findContours来得到轮廓。

1. 基本使用方法如下:

轮廓检测

import cv2

import numpy as np

img = cv2.imread('black_rect1.png', 0)

ret, th = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV)

contours, hierarchy = cv2.findContours(th,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

color_img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

img = cv2.drawContours(color_img, contours, -1, (255, 0, 0), 2)

# bitwise_not对二值图像取反

cv2.imshow('th_img', cv2.bitwise_not(th))

cv2.imshow('contours_img', img)

cv2.waitKey(0)

cv2.destroyAllWindows()

补充:

再不少场景中,找轮廓的最小外接矩形是基本需求,opencv中minAreaRect得到的是一个带有旋转角度信息的rect,可以使用cv2.boxPoints(rect)来将其转为矩形的四个顶点坐标(浮点类型).你也可以使用cv2.polylines来绘制这样的轮廓信息

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值