超过20G的文件怎么保存_小白,你怎么能不尝试这款酸甜可口、做法简单的——蔓越莓饼干...

作为烘焙新手,除了做免烤类的布丁,选用烘烤蛋挞试试手以外,你的真正起点,应该是从这款酸甜可口,做法简单的蔓越莓饼干。

做出来如果不好吃的,就喂狗,没有养狗的,不如喂——老公?

O(∩_∩)O哈哈~

视频里我会告诉你们黄油到底该怎么用,软化和融化是一个意思吗?

学会这款你若不会举一反三做其他口味的,那就该找面墙,面壁思过吧。

视频请看这里:你怎么能不尝试这款酸甜可口的、做法简单的——蔓越莓饼干#西瓜新人#

243fdd5c19ff5d2a4252a88160c542d0.png

蔓越莓饼干

原料:A:无盐黄油110g,糖粉65g,纯牛奶20g;

B:低筋面粉175g,玉米淀粉10g,蔓越莓干60g

烘焙:上火160℃,下火150℃,烤25分钟左右(具体请根据个人烤箱做调整)

160d571ffcfc192438990eb2876ca0a7.png

做法:

1、黄油切小块,软化,用电动打蛋器打发至黄油发白膨松,然后加入糖粉搅打均匀顺滑

2、分2-3次加入纯牛奶,搅打均匀(每加一次牛奶都要搅打均匀后再加下一次,)

3、面粉和淀粉混合过筛加入到黄油中,翻拌均匀,然后加入蔓越莓果干,用手将面团和成团

4、然后放到硅胶垫上,用手捏成条状,模具垫保鲜膜或者油纸,将面团放进模具里,压紧实,然后放冰箱冷冻半小时以上(只要冷冻到面团定型,能切片即可。时间不定,)

5、取出,切片,摆盘,入烤箱烘烤(烘烤时间和温度请根据个人烤箱作调整)

6、出炉的饼干完全冷却后密封保存,可保存20天。

bdf57df51493148a77e6b058ed87a2df.png
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于YOLOv9实现工业布匹缺陷(破洞、污渍)检测系统python源码+详细运行教程+训练好的模型+评估 【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【特别说明】 *项目内容完全原创,请勿对项目进行外传,或者进行违法等商业行为! 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值