python数学建模很厉害吗-Python在数学建模中的应用

Mathematic in Modeling with Python 之数据预处理

标准化:数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间。在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。

标准化基于正态分布的假设,将数据变换为均值为0、标准差为1的标准正态分布。但即使数据不服从正态分布,也可以用此法。特别适用于数据的最大值和最小值未知,或存在孤立点。

主要方法: z-score标准化,即零-均值标准化(常用方法)

$$y=rac{x-μ}σ$$

~~~~~~~ 下面看看在Python中的实现

方法1.scale可以直接对数组进行标准化,请看下例:

import numpy as np

from sklearn import preprocessing

X_train=np.array([[1,50,500],[2,40,400],[5,55,666]])

X_scaled=preprocessing.scale(X_train,axis=0)#axis默认值就是0,所以也可以不写

print X_scaled #标准化后的数据

[[-0.98058068 0.26726124 -0.20054214]

[-0.39223227 -1.33630621 -1.11209733]

[ 1.37281295 1.06904497 1.31263947]]

咱们可以检验一下这个X_scaled的均值和方差

print X_scaled.mean(axis=0)#均值

print X_scaled.std(axis=0)#方差

[ 7.40148683e-17 -2.96059473e-16 0.00000000e+00]

[ 1. 1. 1.]

注意这里的axis=0代表按行处理,也就是把行压缩,也就是对每一列进行标准化,常用!

方法2.from skelearn.preprocessing import StandardScaler

scaler = preprocessing.StandardScaler()

scaler

StandardScaler(copy=True, with_mean=True, with_std=True)

scaler.fit(X_train)

StandardScaler(copy=True, with_mean=True, with_std=True)

scaler.transform(X_train)

array([[-0.98058068, 0.26726124, -0.20054214],

[-0.39223227, -1.33630621, -1.11209733],

[ 1.37281295, 1.06904497, 1.31263947]])

以上是把fit和transform两步分开进行的,我们也可以直接一步完成,如下:

scaler.fit_transform(X_train)

array([[-0.98058068, 0.26726124, -0.20054214],

[-0.39223227, -1.33630621, -1.11209733],

[ 1.37281295, 1.06904497, 1.31263947]])

但是要注意,在实际的建模过程中,我们通常将数据集划分为训练数据集和测试数据集,这时候我们应该分两步进行,先fit训练数据集,并将其定义为一个变量,比如ss,然后用ss来transform训练数据集从而进行模型的拟合,之后在检验模型的拟合度时,首先也要对测试数据集进行transform,这是就要用之前fit好的ss来transform测试数据集了,当然,这里只针对于变量数据,不包括target

(更新:用第二种方法的时候由于fit能记忆均值和方差,所以可以直接进行)

同样可以用均值和方差来进行验证:

print scaler.fit_transform(X_train).mean(axis=0)

print scaler.fit_transform(X_train).std(axis=0)

[ 7.40148683e-17 -2.96059473e-16 0.00000000e+00]

[ 1. 1. 1.]

我们一般采用方法2,因为它可以保存训练集中的参数(均值、方差)直接使用其对象转换测试集数据.

其实,对数据进行标准化的数学方法不止上面这一个,还有以下几个:离差标准化

则是对原始数据的一个线性变换,公式如下:

$$y=rac{x-x_{min}}{x_{max}-x_{min}}$$

这种方法有个缺陷就是当有新数据加入时,可能导致$x_{max}$和$x_{min}$的变化,需要重新定义。

下面来编程模拟实现一个实例:

import numpy as np

x=np.array([[1.5,8.8,2.3],[5.8,5.0,6.2],[7.2,8.3,9.6],[4.4,5.5,6.6]])

x

array([[ 1.5, 8.8, 2.3],

[ 5.8, 5. , 6.2],

[ 7.2, 8.3, 9.6],

[ 4.4, 5.5, 6.6]])

x.shape

(4, 3)

X_NEW=[]

for i in range(0,x.shape[1]):

x_new=(x[:,i]-min(x[:,i]))/(max(x[:,i])-min(x[:,i]))

print x_new

X_NEW.append(x_new)

[ 0. 0.75438596 1. 0.50877193]

[ 1. 0. 0.86842105 0.13157895]

[ 0. 0.53424658 1. 0.5890411 ]

np.array(X_NEW).transpose()#最终数据

array([[ 0. , 1. , 0. ],

[ 0.75438596, 0. , 0.53424658],

[ 1. , 0.86842105, 1. ],

[ 0.50877193, 0.13157895, 0.5890411 ]])

当然,我们也可以直接调用sklearn中的MinMaxScaler()来实现上述功能:

from sklearn import preprocessing

min_max_scaler = preprocessing.MinMaxScaler()

X_minMax = min_max_scaler.fit_transform(x)

X_minMax#最终数据

array([[ 0. , 1. , 0. ],

[ 0.75438596, 0. , 0.53424658],

[ 1. , 0.86842105, 1. ],

[ 0.50877193, 0.13157895, 0.5890411 ]])

结果是一模一样的!

为了方便起见,我们今后就直接调用MinMaxScaler() 就好了.

离差标准化可以扩展一下,比如我们想要把数据映射到-1和1之间,那么就采用以下数学公式:

$$x_{new}=rac{x-x_{mean}}{x_{max}-x_{min}}$$

编程模拟一下,直接对之前的代码做一些改动就可以了,如下:

import numpy as np

x=np.array([[1.0,2.2,3.3],[5.2,3.3,2.2],[1.3,2.5,6.8]])

X_NEW=[]

for i in range(x.shape[1]):

x_new=(x[:,i]-np.mean(x[:,i]))/(max(x[:,i])-min(x[:,i]))

print x_new

X_NEW.append(x_new)

[-0.56578947 0.18859649 0.43421053 -0.05701754]

[ 0.5 -0.5 0.36842105 -0.36842105]

[-0.53082192 0.00342466 0.46917808 0.05821918]

np.array(X_NEW).transpose()#最终数据

array([[-0.56578947, 0.5 , -0.53082192],

[ 0.18859649, -0.5 , 0.00342466],

[ 0.43421053, 0.36842105, 0.46917808],

[-0.05701754, -0.36842105, 0.05821918]])

***

以上都是些常用的数据标准化方法,还有一些不太常用的方法,比如:对数Logistic模式:

$$X_{new}=rac{1}{1+e^{-X_{old}}}$$

得出的数都在0和1之间

最后来说一下数据正则化

正则化主要是用于解决过拟合,正则性衡量了函数光滑的程度,正则性越高,函数越光滑。(光滑衡量了函数的可导性,如果一个函数是光滑函数,则该函数无穷可导,即任意n阶可导).

采用正则化方法会自动削弱不重要的特征变量,自动从许多的特征变量中”提取“重要的特征变量,减小特征变量的数量级。这个方法非常有效,当我们有很多特征变量时,其中每一个变量都能对预测产生一点影响。我们可以有很多特征变量,其中每一个变量都是有用的,因此我们不希望把它们删掉,这就导致了正则化概念的发生。

看一下在sklearn中的调用方法

import numpy as np

from sklearn.preprocessing import normalize

x=np.array([[1,2,3],[4,5,6],[7,8,9]])

x

array([[1, 2, 3],

[4, 5, 6],

[7, 8, 9]])

normalizer = preprocessing.Normalizer().fit(x) # fit does nothing

normalizer

Normalizer(copy=True, norm="l2")

normalizer.transform(x)#最终结果

array([[ 0.26726124, 0.53452248, 0.80178373],

[ 0.45584231, 0.56980288, 0.68376346],

[ 0.50257071, 0.57436653, 0.64616234]])

今天就写到这儿吧,有时间继续,如果能帮到你,还请关注下微信公众号“我将在南极找寻你”,更多干货尽在其中!

sklearn官方文档

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值