【C/C++ 2】Clion配置与运行C语言 【C/C++ 1】Clion配置与运行C语言【C/C++ 2】Clion配置与运行C语言一、C++调用外部文件中的函数方法一、 在当前项目中建一新项目,把下列文件添中到项目中 主函数map1.cpp,其中添加 #include “map7.h”,方法二: 在主函数map1.cpp中直接中添加 #include “add.cpp”,#include " sub.cpp",把这三个文件放在同一目录下。参考链接:方法二我这里示例方法一:1.头文件map7.h 声明 map7.ccp中函数
python与java实现余弦相似度,以及点乘和星乘的区别 文章目录矩阵乘法,星乘(*)和点乘(.dot)的区别1.基本示例2. 总结python实现余弦相似度java实现余弦相似度矩阵乘法,星乘(*)和点乘(.dot)的区别1.基本示例import numpya = numpy.array([[1,2], [3,4]])b = numpy.array([[5,6], [7,8]...
知识图谱(二):图数据库neo4j的Linux安装与基本使用 文章目录linux(centos6.4) 配置Neo4j一、首先安装JDK1.首先进入到root用户下2.添加sudo文件的写权限3.编辑sudoers文件4.撤销sudoers文件写权限,命令:二、下载JDK三、配置环境变量1.用vi命令在环境变量中加上jdk路径的环境变量2.然后执行source3.测试四、下载Neo4j安装1.下载Neo4j安装包2.解压Neo4j安装包3.启动4.错误排查...
自然语言处理-搜索中常用的bm25 BM25算法是一种常见用来做相关度打分的公式,思路比较简单,主要就是计算一个query里面所有词和文档的相关度,然后在把分数做累加操作,而每个词的相关度分数主要还是受到tf/idf的影响。关于BimBIM(二元假设模型)对于单词特征,只考虑单词是否在doc中出现过,并没有考虑单词本身的相关特征,BM25在BIM的基础上引入单词在查询中的权值,单词在doc中的权值,以及一些经验参数,所以BM25...
TF flags的简介 1、TF flags的简介1、flags可以帮助我们通过命令行来动态的更改代码中的参数。Tensorflow 使用flags定义命令行参数的方法。ML的模型中有大量需要tuning的超参数,所以此方法,迎合了需要一种灵活的方式对代码某些参数进行调整的需求(1)、比如,在这个py文件中,首先定义了一些参数,然后将参数统一保存到变量FLAGS中,相当于赋值,后边调用这些参数的时候直接使用FLAGS...
python 下载模块加速实现记录 加速pip下载:更换pip源pip下载python包时默认使用国外源,下载比较慢,可以考虑替换为国内源。临时修改源清华源清华大学的pip源,它是官网pypi的镜像,每隔5分钟同步一次,推荐使用。pip install -i https://pypi.tuna.tsinghua.edu.cn/simple –trusted-host pypi.tuna.tsinghua.edu.cn p...
DeepWalk模型的简介与优缺点 1、DeepWalk[DeepWalk] DeepWalk- Online Learning of Social Representations (SBU 2014)word2vec是基于序列进行embedding;但是,实际上实体之间的关系越来越复杂化、网络化。这个时候sequence embedding------>graph embedding。图的定义:G=(V,E),Evv...
nlp模型-bert从入门到精通(二) 命名实体识别首先下载相应bert 模块pip install bert-base==0.0.9 -i https://pypi.python.org/simple也可参考官网处理安装验证
nlp模型-bert从入门到精通(一) 文章目录基础资料准备从0到1了解模型的优缺点BERT这个模型与其它两个不同的是:BERT模型具有以下两个特点:模型的输入参考资料:在说内容之前先把,bert基本资料准备一下基础资料准备tensorflow版:点击传送门pytorch版(注意这是一个第三方团队实现的):点击传送门论文:点击传送门从0到1了解模型的优缺点从现在的大趋势来看,使用某种模型预训练一个语言模型看起来是一种比较靠...
MySQL 中对字符串进行操作:字符串截取 1、left(name,4)截取左边的4个字符SELECT LEFT(201809,4) 年结果:20182、right(name,2)截取右边的2个字符SELECT RIGHT(201809,2) 月份结果:093、SUBSTRING(name,5,3) 截取name这个字段 从第五个字符开始 只截取之后的3个字符SELECT SUBSTRING('成都融资事业部',5,3)...
keras model.compile损失函数与优化器 概述损失函数是模型优化的目标,所以又叫目标函数、优化评分函数,在keras中,模型编译的参数loss指定了损失函数的类别,有两种指定方法:model.compile(loss='mean_squared_error', optimizer='sgd')或者from keras import lossesmodel.compile(loss=losses.mean_squared_err...
hive 转义字符的使用,以及regexp_extract用法 语法:regexp_extract(string subject, string pattern, int index)返回值: string说明: 将字符串subject按照pattern正则表达式的规则拆分,返回index指定的字符。第一参数: 要处理的字段第二参数: 需要匹配的正则表达式第三个参数:0是显示与之匹配的整个字符串1 是显示第一个括号里面的2 是...
Query意图识别分析 outline近段时间在研究搜索的相关技术,在工作中主要涉及到资讯搜索功能的实现。我们采用了elasticsearch搜索引擎,es基础和es进阶1。由于需要对搜索功能进行迭代,所以笔者继续深入研究搜索原理和性能优化。本文主要研究以下几点:什么是搜索搜索评价指标意图识别query改写什么是搜索一个搜索引擎的技术构建主要包含三大部分:(1) 对query的理解(2) 对内容(文档)...
tensorflow之tf.tile\tf.slice等函数的基本用法解读 文章目录tf.tiletf.slicetf.square()tf.reduce_sumtf.multiply()tf.matmul()tf.truedivtf.tile解读:tensorflow中的tile()函数是用来对张量(Tensor)进行扩展的,其特点是对当前张量内的数据进行一定规则的复制。最终的输出张量维度不变。函数定义:tf.tile( input, mult...
对pandas 数据进行数据打乱并选取训练机与测试机集 描述在机器学习中,拿到一堆训练数据一般会需要将数据切分成训练集和测试集,或者切分成训练集、交叉验证集和测试集,为了避免切分之后的数据集在特征分布上出现偏倚,我们需要先将数据打乱,使数据随机排序,然后在进行切分。需要用的方法如下:注:df代表一个pd.DataFramedf = df.sample(frac=1.0): 按100%的比例抽样即达到打乱数据的效果df = df.reset_i...