IT界的小小小学生
码龄5年
  • 2,511,143
    被访问
  • 373
    原创
  • 518,723
    排名
  • 3,461
    粉丝
  • 6
    铁粉
关注
提问 私信

个人简介:bigdata算法交流qq群:249885734邮箱:hhtnan@163.com回执QQ:595454159

  • 加入CSDN时间: 2017-01-13
博客简介:

IT届的小学生

博客描述:
如果建模是做爱,你不能简单的进入,做到一半然后就睡觉了。
查看详细资料
  • 5
    领奖
    总分 1,381 当月 25
个人成就
  • 博客专家认证
  • 获得849次点赞
  • 内容获得276次评论
  • 获得2,888次收藏
创作历程
  • 2篇
    2022年
  • 4篇
    2020年
  • 26篇
    2019年
  • 126篇
    2018年
  • 147篇
    2017年
  • 80篇
    2016年
成就勋章
TA的专栏
  • 知识图谱:图数据(neo4j)从0到1
    付费
    8篇
  • mongodb11天之屠龙宝刀:菜鸟学mongodb
    付费
    11篇
  • lx
    1篇
  • M1
    1篇
  • 异常检测
  • 语义匹配
  • 模型封装
  • 图网络(Graph Embedding)-原理及应用
  • c/c++
    1篇
  • 自然语言处理(NLP)专栏
    16篇
  • Python 科学计算库NumPy 完整教程
    6篇
  • 概率与梳理统计
    4篇
  • 数据之python深度学习框架与机器学习框架要点与实战整理
    8篇
  • 分类算法专栏
    5篇
  • python之dataframe 操作
    2篇
  • 面试试题与笔试试题汇总
    3篇
  • python高并发、高性能编程
    1篇
  • python下的绘图matplotlib设置与实战
    1篇
  • python
    149篇
  • 文本分析
    5篇
  • algorithm principle/原理
    23篇
  • hive
    1篇
  • data mining
    6篇
  • SQL
    18篇
  • LINUX
    7篇
  • 笔试题
    5篇
  • 杂文热点
    3篇
  • hadoop
    2篇
  • tensorflow
    10篇
  • 大数据分析
    31篇
  • NIP
    18篇
  • mongodb
    20篇
  • 自然语言处理
    14篇
  • 算法原理
    25篇
  • spss
    1篇
  • R
    20篇
  • 数据库
    16篇
  • spss_modeler
    1篇
  • 股票分析
  • redis
    3篇
  • XPATH/BS4
    1篇
  • github
    4篇
  • js
    2篇
  • DJANGO
    15篇
  • golang
    5篇
  • html5
    2篇
  • 阿里云ECS
    8篇
  • EVIEWS
    1篇
  • 推荐系统
    5篇
  • 编程入门讲解方法收集
    1篇
  • spark
    4篇
  • 敏捷开发
    1篇
  • 深度学习
    12篇
  • 小技能篇
    1篇
  • kafka
    1篇
  • 用户画像
    2篇
  • neo4j
    7篇
  • 强化学习
  • 视频教程
    1篇
  • python基础课程笔记
    1篇
  • mac
    2篇
  • c++
    3篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

jupyter notebook中使用新环境

当我们使用conda创建虚拟环境后,kernel不会自动添加到jupyter notebook的kernel列表当中,这时候就需要我们通过命令手动添加
原创
发布博客 前天 10:45 ·
29 阅读 ·
0 点赞 ·
0 评论

用m1 pro的MacBook Pro,安装 Anaconda arm 图形版

Mac系统m1 安装 Anaconda 后安装图形化界面
原创
发布博客 2022.06.27 ·
59 阅读 ·
0 点赞 ·
1 评论

【C/C++ 2】Clion配置与运行C语言

【C/C++ 1】Clion配置与运行C语言【C/C++ 2】Clion配置与运行C语言一、C++调用外部文件中的函数方法一、 在当前项目中建一新项目,把下列文件添中到项目中     主函数map1.cpp,其中添加 #include “map7.h”,方法二: 在主函数map1.cpp中直接中添加 #include “add.cpp”,#include " sub.cpp",把这三个文件放在同一目录下。参考链接:方法二我这里示例方法一:1.头文件map7.h 声明 map7.ccp中函数
原创
发布博客 2020.05.27 ·
897 阅读 ·
0 点赞 ·
0 评论

【C/C++ 1】Clion配置与运行C语言

一、Clion配置
原创
发布博客 2020.05.25 ·
5259 阅读 ·
0 点赞 ·
0 评论

python与java实现余弦相似度,以及点乘和星乘的区别

文章目录矩阵乘法,星乘(*)和点乘(.dot)的区别1.基本示例2. 总结python实现余弦相似度java实现余弦相似度矩阵乘法,星乘(*)和点乘(.dot)的区别1.基本示例import numpya = numpy.array([[1,2], [3,4]])b = numpy.array([[5,6], [7,8]...
原创
发布博客 2020.04.15 ·
604 阅读 ·
0 点赞 ·
0 评论

知识图谱(二):图数据库neo4j的Linux安装与基本使用

文章目录linux(centos6.4) 配置Neo4j一、首先安装JDK1.首先进入到root用户下2.添加sudo文件的写权限3.编辑sudoers文件4.撤销sudoers文件写权限,命令:二、下载JDK三、配置环境变量1.用vi命令在环境变量中加上jdk路径的环境变量2.然后执行source3.测试四、下载Neo4j安装1.下载Neo4j安装包2.解压Neo4j安装包3.启动4.错误排查...
原创
发布博客 2020.04.08 ·
615 阅读 ·
1 点赞 ·
0 评论

自然语言处理-搜索中常用的bm25

BM25算法是一种常见用来做相关度打分的公式,思路比较简单,主要就是计算一个query里面所有词和文档的相关度,然后在把分数做累加操作,而每个词的相关度分数主要还是受到tf/idf的影响。关于BimBIM(二元假设模型)对于单词特征,只考虑单词是否在doc中出现过,并没有考虑单词本身的相关特征,BM25在BIM的基础上引入单词在查询中的权值,单词在doc中的权值,以及一些经验参数,所以BM25...
原创
发布博客 2019.11.22 ·
587 阅读 ·
0 点赞 ·
0 评论

TF flags的简介

1、TF flags的简介1、flags可以帮助我们通过命令行来动态的更改代码中的参数。Tensorflow 使用flags定义命令行参数的方法。ML的模型中有大量需要tuning的超参数,所以此方法,迎合了需要一种灵活的方式对代码某些参数进行调整的需求(1)、比如,在这个py文件中,首先定义了一些参数,然后将参数统一保存到变量FLAGS中,相当于赋值,后边调用这些参数的时候直接使用FLAGS...
原创
发布博客 2019.10.25 ·
685 阅读 ·
0 点赞 ·
0 评论

python 下载模块加速实现记录

加速pip下载:更换pip源pip下载python包时默认使用国外源,下载比较慢,可以考虑替换为国内源。临时修改源清华源清华大学的pip源,它是官网pypi的镜像,每隔5分钟同步一次,推荐使用。pip install -i https://pypi.tuna.tsinghua.edu.cn/simple –trusted-host pypi.tuna.tsinghua.edu.cn p...
原创
发布博客 2019.09.26 ·
572 阅读 ·
0 点赞 ·
0 评论

DeepWalk模型的简介与优缺点

1、DeepWalk[DeepWalk] DeepWalk- Online Learning of Social Representations (SBU 2014)word2vec是基于序列进行embedding;但是,实际上实体之间的关系越来越复杂化、网络化。这个时候sequence embedding------>graph embedding。图的定义:G=(V,E),Evv...
原创
发布博客 2019.09.18 ·
3585 阅读 ·
1 点赞 ·
0 评论

nlp模型-bert从入门到精通(二)

命名实体识别首先下载相应bert 模块pip install bert-base==0.0.9 -i https://pypi.python.org/simple也可参考官网处理安装验证
原创
发布博客 2019.09.11 ·
1146 阅读 ·
1 点赞 ·
0 评论

nlp模型-bert从入门到精通(一)

文章目录基础资料准备从0到1了解模型的优缺点BERT这个模型与其它两个不同的是:BERT模型具有以下两个特点:模型的输入参考资料:在说内容之前先把,bert基本资料准备一下基础资料准备tensorflow版:点击传送门pytorch版(注意这是一个第三方团队实现的):点击传送门论文:点击传送门从0到1了解模型的优缺点从现在的大趋势来看,使用某种模型预训练一个语言模型看起来是一种比较靠...
原创
发布博客 2019.09.11 ·
2464 阅读 ·
3 点赞 ·
0 评论

c++学习之路:从入门到精通

一、配置环境:clion二、【C++学习】如何在Clion中生成多个可执行文件
原创
发布博客 2019.08.07 ·
496 阅读 ·
0 点赞 ·
0 评论

MySQL 中对字符串进行操作:字符串截取

1、left(name,4)截取左边的4个字符SELECT LEFT(201809,4) 年结果:20182、right(name,2)截取右边的2个字符SELECT RIGHT(201809,2) 月份结果:093、SUBSTRING(name,5,3) 截取name这个字段 从第五个字符开始 只截取之后的3个字符SELECT SUBSTRING('成都融资事业部',5,3)...
原创
发布博客 2019.08.02 ·
1316 阅读 ·
2 点赞 ·
0 评论

keras model.compile损失函数与优化器

概述损失函数是模型优化的目标,所以又叫目标函数、优化评分函数,在keras中,模型编译的参数loss指定了损失函数的类别,有两种指定方法:model.compile(loss='mean_squared_error', optimizer='sgd')或者from keras import lossesmodel.compile(loss=losses.mean_squared_err...
原创
发布博客 2019.07.12 ·
5078 阅读 ·
0 点赞 ·
0 评论

hive 转义字符的使用,以及regexp_extract用法

语法:regexp_extract(string subject, string pattern, int index)返回值: string说明: 将字符串subject按照pattern正则表达式的规则拆分,返回index指定的字符。第一参数: 要处理的字段第二参数: 需要匹配的正则表达式第三个参数:0是显示与之匹配的整个字符串1 是显示第一个括号里面的2 是...
转载
发布博客 2019.07.07 ·
4075 阅读 ·
0 点赞 ·
0 评论

Query意图识别分析

outline近段时间在研究搜索的相关技术,在工作中主要涉及到资讯搜索功能的实现。我们采用了elasticsearch搜索引擎,es基础和es进阶1。由于需要对搜索功能进行迭代,所以笔者继续深入研究搜索原理和性能优化。本文主要研究以下几点:什么是搜索搜索评价指标意图识别query改写什么是搜索一个搜索引擎的技术构建主要包含三大部分:(1) 对query的理解(2) 对内容(文档)...
原创
发布博客 2019.07.02 ·
2415 阅读 ·
4 点赞 ·
0 评论

tensorflow之tf.tile\tf.slice等函数的基本用法解读

文章目录tf.tiletf.slicetf.square()tf.reduce_sumtf.multiply()tf.matmul()tf.truedivtf.tile解读:tensorflow中的tile()函数是用来对张量(Tensor)进行扩展的,其特点是对当前张量内的数据进行一定规则的复制。最终的输出张量维度不变。函数定义:tf.tile( input, mult...
原创
发布博客 2019.06.27 ·
797 阅读 ·
0 点赞 ·
0 评论

对pandas 数据进行数据打乱并选取训练机与测试机集

描述在机器学习中,拿到一堆训练数据一般会需要将数据切分成训练集和测试集,或者切分成训练集、交叉验证集和测试集,为了避免切分之后的数据集在特征分布上出现偏倚,我们需要先将数据打乱,使数据随机排序,然后在进行切分。需要用的方法如下:注:df代表一个pd.DataFramedf = df.sample(frac=1.0): 按100%的比例抽样即达到打乱数据的效果df = df.reset_i...
原创
发布博客 2019.06.26 ·
2153 阅读 ·
1 点赞 ·
0 评论
加载更多