python数据挖掘与数据分析需要的数学_数据分析和数据挖掘的区别是什么?如何做好数据挖掘?...

一、数据分析和数据挖掘的区别岗位职责和目标方面:

数据分析侧重商业理解和分析策略能力,目标是通过数据给出促进业务、用户、用户价值增长的策略;对技术能力要求相对较低;工具方面主要是SQL、excel,Python/R,有的公司中Python只是加分项,并非必须。

数据挖掘侧重统计学、算法、技术开发能力,对商业理解和策略能力要求较低,主要对接数据分析师和产品的需求等。主要目标也是通过技术手段促进业务或用户的增长,但与业务的接近程度较低,比数据分析略微靠后端。

2. 未来发展方向

数据分析一般走的管理路线,可到一级部门总监级别。

数据挖掘可以走专家路线,或者管理路线至CTO

3. 待遇方面

一般同级别岗位,现在数据挖掘的待遇高于数据分析师

其实,数据挖掘和算法的岗位比较接近。

二、关于如何做好数据挖掘

数据挖掘需要数学、统计学、计算机基础。具体到个人学的知识能否满足数据挖掘的需求,需要根据市场所需和自己掌握的东西,判断该从哪里着手。

至于自己还需要补充哪些知识,可以选择多看一些数据挖掘、机器学习方面的书籍,补充自己的知识库;也可以看一些Kaggle的比赛,参考别人的解题思路,尤其是排名靠前的模型中用到的模型,进行学习;也可以从ucademy、cousera上学习机器学习大神的课程。

如果你看了相关方面的书籍、比赛项目、课程,会发现自己在技术方面需要提升的地方,如目前最流行的工具python学的够不够?R用的相对要少一些,不过也有公司在用。甚至有的机器学习岗位需要spark、hive、SQL等数据库相关的技能。如果认为仍有不足,那就需要学习这些软件技能了,不过这些一般比高等统计知识要相对简单。

以上,不知有没有解答你的疑惑?上述应该有你需要补充学习的内容,每一个都需要一定时间,慢慢学习成长。

关于Python数据挖掘、机器学习相关的书籍可参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值