一、数据分析和数据挖掘的区别岗位职责和目标方面:
数据分析侧重商业理解和分析策略能力,目标是通过数据给出促进业务、用户、用户价值增长的策略;对技术能力要求相对较低;工具方面主要是SQL、excel,Python/R,有的公司中Python只是加分项,并非必须。
数据挖掘侧重统计学、算法、技术开发能力,对商业理解和策略能力要求较低,主要对接数据分析师和产品的需求等。主要目标也是通过技术手段促进业务或用户的增长,但与业务的接近程度较低,比数据分析略微靠后端。
2. 未来发展方向
数据分析一般走的管理路线,可到一级部门总监级别。
数据挖掘可以走专家路线,或者管理路线至CTO
3. 待遇方面
一般同级别岗位,现在数据挖掘的待遇高于数据分析师
其实,数据挖掘和算法的岗位比较接近。
二、关于如何做好数据挖掘
数据挖掘需要数学、统计学、计算机基础。具体到个人学的知识能否满足数据挖掘的需求,需要根据市场所需和自己掌握的东西,判断该从哪里着手。
至于自己还需要补充哪些知识,可以选择多看一些数据挖掘、机器学习方面的书籍,补充自己的知识库;也可以看一些Kaggle的比赛,参考别人的解题思路,尤其是排名靠前的模型中用到的模型,进行学习;也可以从ucademy、cousera上学习机器学习大神的课程。
如果你看了相关方面的书籍、比赛项目、课程,会发现自己在技术方面需要提升的地方,如目前最流行的工具python学的够不够?R用的相对要少一些,不过也有公司在用。甚至有的机器学习岗位需要spark、hive、SQL等数据库相关的技能。如果认为仍有不足,那就需要学习这些软件技能了,不过这些一般比高等统计知识要相对简单。
以上,不知有没有解答你的疑惑?上述应该有你需要补充学习的内容,每一个都需要一定时间,慢慢学习成长。
关于Python数据挖掘、机器学习相关的书籍可参考