分块的单点修改查询区间和_树状数组的区间修改与单点查询与区间查询

如何将普通树状数组升级

普通的单点修改单点查询就不讲了,从区间修改和单点查询讲起。

原来的值存在a[]里面,多建立个数组c1[],注意:c1[i]=a[i]-a[i-1]。

那么求a[i]的值的时候a[i]=a[i-1]+c1[i]=a[i-2]+c1[i]+c1[i-1]=…..=c1[1]+c1[2]+…+c1[i]。

所以就用c1[]建立树状数组,便可以很快查询a[i]的值。不多说,见代码。

#include#include

#define lb(x) x&-x

#define maxn 1000000

#define in(x) scanf("%d",&x)

#define in3(x,y,z) scanf("%d%d%d",&x,&y,&z)

using namespacestd;inta[maxn],c1[maxn],n,m,val,x,y,temp;void update(int x,intval)

{while(x<=n)

{

c1[x]+=val;

x+=lb(x);

}

}int sum(intx)

{int ans=0;while(x)

{

ans+=c1[x];

x-=lb(x);

}returnans;

}

main(){in(n);in(m);for(int i=1;i<=n;i++)

{in(a[i]);

update(i,a[i]-a[i-1]);

}while(m--)

{in(temp);if(temp==1)

{in(x);

printf("%d\n",sum(x));

}else{

in3(x,y,val);

update(x,val);

update(y+1,-val);

}

}

}

自认为还是比较好看懂的,接下来是区间修改和区间查询了。

我们用sum(1,k)表示区间1到k的和。

那么sum(1,k)=c1(1)+(c1(2)+c1(2))+(c1(1)+c1(2)+c1(3))+…+(c1(1)+c1(2)+…+c1(k))。

然后我们把式子打开。

sum(1,k)=k*(c1(1)+c1(2)+c1(3)+…+c1(k))-(0*c1*(1)+1*c1(2)+2*c1(3)+…+(k-1)*c1(k))。

是不是有些小激动,我们可以多建立一个数组c2[],c2[n]用来存(n-1)*c1(n),并且把c2数组也建立成树状数组,那么问题就迎刃而解了。

详见代码:

#include#include

#define lb(x) x&-x

#define maxn 1000000

#define in(x) scanf("%d",&x)

#define in3(x,y,z) scanf("%d%d%d",&x,&y,&z)

using namespacestd;inta[maxn],c1[maxn],c2[maxn],n,m,val,x,y,temp;void update(int *q,int x,intval)

{while(x<=n)

{

q[x]+=val;

x+=lb(x);

}

}int getsum(int *q,intx)

{int ans=0;while(x)

{

ans+=q[x];

x-=lb(x);

}returnans;

}int sum(intx)

{intans1,ans2;

ans1=x*getsum(c1,x);

ans2=getsum(c2,x);return ans1-ans2;

}int inquire(int x,inty)

{intans1,ans2;

ans1=sum(y);

ans2=sum(x-1);return ans1-ans2;

}

main() {in(n);in(m);for(int i=1; i<=n; i++)

{in(a[i]);

update(c1,i,a[i]-a[i-1]);

update(c2,i,(i-1)*(a[i]-a[i-1]));

}for(int i=1; i<=m; i++)

{in(temp);if(temp==1)

{

in3(x,y,val);

update(c1,x,val);

update(c1,y+1,-val);

update(c2,x,(x-1)*val);

update(c2,y+1,-y*val);

}else{in(x);in(y);

printf("%d\n",inquire(x,y));

}

}

}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
线段树和树状数组都是用于解决区间查询问题的数据结构,它们在不同的场景下有不同的应用。 首先,树状数组(Binary Indexed Tree,BIT),也称为Fenwick树,是一种用于高效实现区间查询的数据结构。它通过将原始数组进行分块存储,在每个块内用累加的方式存储前缀和,从而实现了快速的区间查询单点更新操作。树状数组的主要优势是实现简单、效率高,适用于求解一维区间和问题,例如动态求解数组前缀和、求解逆序对等。但是树状数组不适用于区间修改操作,即不能有效地处理某个区间内的元素更新。 其次,线段树(Segment Tree)是一种二叉树的数据结构,用于处理区间查询和更新操作。线段树将整个区间划分为若干个子区间,并在每个节点中存储该区间的某种统计信息,例如区间和、最大值、最小值等。线段树的构造过程是一个递归的过程,通过不断地划分区间直到达到单个元素的程度。线段树的主要优势是能够高效地处理区间查询区间修改操作,适用于解决多维区间查询问题,例如区间最值查询区间更新等。 总之,树状数组和线段树都是用于解决区间查询问题的数据结构。树状数组适用于一维场景,实现简单、效率高,但不能处理区间修改操作;线段树适用于多维场景,能够高效地处理区间查询修改操作。在实际问题中,根据具体情况选择适合的数据结构可以提高解题效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值