算法设计与分析基础课后练习答案
习题1.1
4.设计一个计算的算法,n是任意正整数。除了赋值和比较运算,该算法只能用到基本的四则运算操作。
算法求
//输入:一个正整数n2
//输出:。
step1:a=1;
step2:若a*a
step3:a=a+1转step 2;
5. a.用欧几里德算法求gcd(31415,14142)。
b. 用欧几里德算法求gcd(31415,14142),比检查min{m,n}和gcd(m,n)间连续整数的算法快多少倍?请估算一下。
a. gcd(31415, 14142) = gcd(14142, 3131) = gcd(3131, 1618) =gcd(1618, 1513) = gcd(1513, 105) = gcd(1513, 105) = gcd(105, 43) =gcd(43, 19) = gcd(19, 5) = gcd(5, 4) = gcd(4, 1) = gcd(1, 0) = 1.
b.有a可知计算gcd(31415,14142)欧几里德算法做了11次除法。
连续整数检测算法在14142每次迭代过程中或者做了一次除法,或者两次除法,因此这个算法做除法的次数鉴于1·14142 和 2·14142之间,所以欧几里德算法比此算法快1·14142/11 ≈ 1300 与 2·14142/11 ≈ 2600 倍之间。
6.证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立.
Hint:
根据除法的定义不难证明:
如果d整除u和v, 那么d一定能整除u±v;
如果d整除u,那么d也能够整除u的任何整数倍ku.
对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。
数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。故gcd(m,n)=gcd(n,r)
7.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次?
Hint:
对于任何形如0<=m
gcd(m,n)=gcd(n,m)
并且这种交换处理只发生一次.
8.a.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?(1次)
b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?(5次)
gcd(5,8)
习题1.2
1.(农夫过河)
P—农夫 W—狼 G—山羊 C—白菜
2.(过桥问题)
1,2,5,10---分别代表4个人, f—手电筒
4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平方根的函数)
算法Quadratic(a,b,c)
//求方程ax^2+bx+c=0的实根的算法
//输入:实系数a,b,c
//输出:实根或者无解信息
If a≠0
D←b*b-4*a*c
If D>0
temp←2*a
x1←(-b+sqrt(D))/temp
x2←(-b-sqrt(D))/temp
return x1,x2
else if D=0 return –b/(2*a)
else return “no real roots”
else //a=0
if b≠0 return –c/b
else //a=b=0
if c=0 return “no real numbers”
else return “no real roots”
5. 描述将十进制整数表达为二进制整数的标准算法
a.用文字描述
b.用伪代码描述
解答:
a.将十进制整数转换为二进制整数的算法
输入:一个正整数n
输出:正整数n相应的二进制数
第一步:用n除以2,余数赋给Ki(i=0,1,2...),商赋给n
第二步:如果n=0,则到第三步,否则重复第一步
第三步:将Ki按照i从高到低的顺序输出
b.伪代码
算法 DectoBin(n)
//将十进制整数n转换为二进制整数的算法
//输入:正整数n
//输出:该正整数相应的二进制数,该数存放于数组Bin[1...n]中
i=1
while n!=0 do {
Bin[i]=n%2;
n=(int)n/2;
i++;
}
while i!=0 do{
print Bin[i