tensorflow环境下的识别食物_TensorFlow深度学习(二):识别摄像头看到的内容

本文介绍如何结合OpenCV和TensorFlow实现摄像头实时图像识别。首先介绍了安装OpenCV的步骤,然后展示了使用OpenCV读取摄像头画面的代码示例。接着,将TensorFlow官方模型应用于摄像头视频流,进行物体检测。最后提醒读者,运行时可能出现的警告不影响正常功能,并鼓励尝试识别不同物体。
摘要由CSDN通过智能技术生成

本节我们介绍如何使用 OpenCV + TensorFlow 识别摄像头看到的内容

前言

上节课我们成功安装了 TensorFlow 并且运行了官方的例子,对官方的图片成功进行了识别,那么我们能不能使用自己的图像输入源来跟TensorFlow配合呢?答案是可以的,这节课我们就来一起看看如何使用本地的摄像头和TensorFlow来进行配合。

如果还没有看过上篇手记的同学,可以戳下面的链接来学习一下如何搭建TensorFlow的开发环境吧~

安装OpenCV

首先我们想要操作摄像头,就需要安装OpenCV,由于我们是在Windows系统上,所以安装OpenCV要使用别人编译过的whl文件来安装。去下面的地址,选择适合你的whl文件版本:

我下载的是 opencv_python‑3.4.1+contrib‑cp36‑cp36m‑win_amd64.whl 其中 cp36 表示 cpython3.6 的版本,win 表示 windows系统,amd64 表示64位。同理,如果你是python其他版本就选择对应的cp和系统位数。建议跟本教程一样的环境,避免不必要的麻烦。

下载完成以后,进入文件存放的目录输入命令:

pip install opencv_python‑3.4.1+contrib‑cp36‑cp36m‑win_amd64.whl

即可完成安装,如果你没有安装anaconda可能会有一些包安装失败,因为OpenCV需要很多依赖包。

测试安装

在python交互界面输入以下命令,打印出3.4.1表示安装成功,代表我们安装的是opencv的3.4.1版本

import cv2

cv2.__version__

有些同学可能从来没有接触过OpenCV,这里就对OpenCV做一个简单的小例子:

import numpy as np

import cv2

# 打开本地摄像头,括号内表示设备编号,第一个设备为0,如果电脑有两个摄像头,第二个摄像头就是1

cap = cv2.VideoCapture(0)

while(True):

# 从摄像头中读取画面,while表示循环读取画面,也就是一张一张图片形成了一个视频

ret, image = cap.read()

# 设置每一张图片的颜色

img_color = cv2.cvtColor(image, 0)

# 显示窗口

cv2.imshow('window', img_color)

# 如果按下键盘上的 Q 就关闭窗口

if cv2.waitKey(1) & 0xFF == ord('q'):

break

# 释放资源

cap.release()

# 关闭窗口

cv2.destroyAllWindows()

由此案例我们就可以发现,cap.read() 就是读取一帧摄像头的画面,当我们把它放在一个死循环中,它就会不断的读

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值