python 三维数组聚类分析_对三维数据集的K-means聚类研究

本文通过对CD3/CD8/CD45三维数据集进行K-means聚类研究,探讨了不同k值下的聚类效果。通过Matlab实现,比较了k=3和k=4时的聚类中心,发现k=4时聚类契合度更高,且包含k=3的中心。使用轮廓图进一步验证了k=4的聚类效果更优。
摘要由CSDN通过智能技术生成

对三维数据集的K-means聚类研究

本文是在《根据”关于‘k-means算法在流式细胞仪中细胞分类的应用’的学习笔记总结“撰写的中期报告》一文的基础上,对该实验数据中的CD3/CD8/CD45三种抗原分子的三列荧光强度数据在Matlab环境下进行K-means聚类研究。

实验数据地址:http://pan.baidu.com/s/1hqomDq0

由于之前论文查重时查到了一文,现特摘取论文中部分内容修改后辑成本文,文字尽量精简。待论文事情结束后我会在整理成另一篇文章。

对以CD3/CD8/CD45为分类指标所对应的三列光谱数据进行减法聚类。

程序

A=load('CD3-8-45-4.txt');

X=A(:,[4 5 6]);

[C,S]=subclust(X,0.5,[],[1.25 0.5 0.15 0]);

得到聚类中心为

C=

79 75 62

102 74 490

576 74 536

设置参数k=3,进行聚类。

程序

idx3=kmeans(X,3,'dist','city','display','iter');

得到聚类中心为

cent3=

99 78 470

552 97 552

78 78 54

由于都是三维矩阵,为便于比较,可以用三维散点图在三维空间中显示出两组聚类中心,分别用星号*和三角△表示。

程序

plot(0,0);

hold on

view(3)<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值