2007-05-27
学习计算机技术必须要学习《离散数学》这门课吗?
最常和理论计算机科学放在一起的一个词是什么?答:离散数学。
这两者的关系是如此密切,以至于它们在不少场合下成为同义词。传统上,数学是以分析为中心的。数学系的同学要学习三四个学期的数学分析,然后是复变函数,实变函数,泛函数等等。 实变和泛函被很多人认为是现代数学的入门。在物理,化学,工程上应用的,也以分析为主。
随着计算机科学的出现,一些以前不太受到重视的数学分支突然重要起来。人们发现,这些分支处理的数学对象与传统的分析有明显的区别:分析研究的问题解决方案是连续的,因而微分,积分成为基本的运算;而这些分支研究的对象是离散的,因而很少有机会进行此类的计算。 人们从而称这些分支为“离散数学”...全部
最常和理论计算机科学放在一起的一个词是什么?答:离散数学。
这两者的关系是如此密切,以至于它们在不少场合下成为同义词。传统上,数学是以分析为中心的。数学系的同学要学习三四个学期的数学分析,然后是复变函数,实变函数,泛函数等等。
实变和泛函被很多人认为是现代数学的入门。在物理,化学,工程上应用的,也以分析为主。
随着计算机科学的出现,一些以前不太受到重视的数学分支突然重要起来。人们发现,这些分支处理的数学对象与传统的分析有明显的区别:分析研究的问题解决方案是连续的,因而微分,积分成为基本的运算;而这些分支研究的对象是离散的,因而很少有机会进行此类的计算。
人们从而称这些分支为“离散数学”。“离散数学”的名字越来越响亮,最后导致以分析为中心的传统数学分支被相对称为“连续数学”。
离散数学经过几十年发展,基本上稳定下来。一般认为,离散数学包含以下学科:1) 集合论,数理逻辑与元数学。
这是整个数学的基础,也是计算机科学的基础。2) 图论,算法图论;组合数学,组合算法。计算机科学,尤其是理论计算机科学的核心是算法,而大量的算法建立在图和组合的基础上。3) 抽象代数。代数是无所不在的,本来在数学中就非常重要。
在计算机科学中,人们惊讶地发现代数竟然有如此之多的应用。收起