python 方差分析_SPSS详细操作:单因素方差分析

一、问题与数据

为调查A、B、C三种治疗措施对患者谷丙转氨酶(ALT)的影响,某科室将45名患者随机分为三组,每组15人,分别采取A、B、C三种治疗措施。治疗后ALT水平(U/L)如下。试问应用三种治疗措施后,患者的ALT水平是否有差异?

表1. 三组患者治疗后的ALT水平(U/L)

sg_trans.gif

二、对数据结构的分析

整个数据资料涉及3组患者,每组15人,测量指标为血常规报告的ALT水平,因此属于多组设计的定量资料。

要想知道不同治疗措施对ALT水平的影响是否相同,则要比较3组的总体均数之间的差异是否具有统计学意义。若各组观察值满足独立性,服从正态分布或近似正态分布,并且各组之间的方差齐,可选用单因素方差分析。

三、SPSS分析方法

1. 数据录入SPSS(1=A组,2=B组,3=C组)

sg_trans.gif

2. 选择Analyze→General Linear

Model→Univariate (假设三组数据服从正态分布)

sg_trans.gif

3. 选项设置

1)主对话框设置:将分析变量(ALT)送入Dependent Variable

框中→将分组变量(Group)送入Fixed Factor(s) 框中。

sg_trans.gif

2) Options设置:点击Options按钮,勾选Descriptive

statistics(显示统计描述)和Homogeneity tests(方差齐性检验)→Continue→OK。

sg_trans.gif

四、结果解读

sg_trans.gif

Descriptive

Statistics表格给出了三组和总体ALT水平的部分统计信息,包括组别(Group)、均数(Mean)、标准差(Std.

Deviation)和例数(N)。

sg_trans.gif

Levene’s Test of Equality of Error

Variances表格给出了方差齐性检验的结果。F值=0.791,P(Sig.)=0.460,说明三组数据方差齐,满足方差分析的适用条件。

sg_trans.gif

Tests of Between-Subjects

Effects表格给出了方差分析的结果。其中,Corrected

Total一行表示总变异,Group一行表示组间变异,Error一行表示组内变异,Type Ⅲ Sum of

Squares表示离均差平方和,Mean

Square表示均方。方差分析的结果主要看Group一行,F值=68.810,P(Sig.)<0.001。

五、撰写结论

A组患者ALT水平为(13.28 ±

4.39)U/L,B组患者ALT水平为(28.44 ± 3.65)U/L,C组患者ALT水平为(12.15 ±

4.64)U/L。A、B、C三种治疗措施对患者ALT水平的影响差异具有统计学意义(F=68.810,P<0.001)。

六、延伸阅读

1. 单因素方差分析也可以通过Analyze→Compare

Means→One-Way ANOVA进行,将ALT送入Dependent

List框中,将Group送入Factor框中,其结果与本例的操作是一样的,感兴趣的亲可以自己动手试一下!

2.

单因素方差分析适用于只有一个处理因素的完全随机设计,处理因素可以有2个及以上的处理水平,观察指标为连续变量。适用条件包括:

1)观测指标满足独立性;

2)各组观测指标均来自正态分布总体;

3)各组观测指标方差相等。

在实际中由于方差分析具有稳健性,因此对正态性的条件要求不是很严格,但是对方差齐的要求比较严格。

3.

本例只是得出了3组总体均数之间差异具有统计学意义,并不意味着任意2组之间的均数差异都具有统计学意义。要想进一步了解哪两个组间的ALT水平存在差异,还需要进一步做样本均数之间的多重比较。SPSS统计软件提供了很多种用于两两比较的方法,包括Bonferroni法、S-N-K法、Tukey法等。之所以有这么多种方法,是因为目前还没有一种在任何条件下都适用、而且效果好的方法,这些方法都是从不同角度上控制多重比较时I型错误的发生概率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值